Spécifications du disjoncteur

  • Des compteurs

Un disjoncteur ou, plus simplement, un disjoncteur est un appareil électrique familier à presque tout le monde. Tout le monde sait que la machine éteint le réseau en cas de problème. Si vous ne soyez pas sage, alors ces problèmes - trop de courant électrique. Un courant électrique excessif est dangereux si tous les conducteurs et appareils électriques sont en panne, risquent de surchauffer, de provoquer un incendie et, par conséquent, un incendie. Par conséquent, la protection contre les courants forts est un classique des circuits électriques et existait à l'aube de l'électrification.

Tout appareil à protection de courant maximale a deux tâches importantes:

1) à l'heure et reconnaître avec précision le courant trop élevé;

2) couper le circuit avant que ce courant puisse causer des dommages.

Dans ce cas, les courants forts peuvent être divisés en deux catégories:

1) courants importants causés par une surcharge du réseau (par exemple, l'allumage d'un grand nombre d'appareils électroménagers ou le mauvais fonctionnement de certains d'entre eux);

2) les surintensités de court-circuit, lorsque les conducteurs de phase et zéro sont directement interconnectés, en contournant la charge.

Cela peut sembler étrange à certains, mais c’est avec un courant de court-circuit extrême que tout est extrêmement simple. Les trépieds électromagnétiques modernes déterminent facilement et absolument correctement les courts-circuits et déconnectent la charge en une fraction de seconde, évitant ainsi le moindre dommage aux conducteurs et à l'équipement.

Avec les courants de surcharge d'autant plus difficile. Ce courant n’est pas très différent du courant nominal; pendant quelque temps, il peut circuler dans le circuit sans aucune conséquence. Par conséquent, il n'est pas nécessaire de couper instantanément un tel courant, d'autant plus qu'il aurait pu apparaître très brièvement. La situation est aggravée par le fait que chaque réseau a son propre courant de surcharge limitant. Et même pas un.

Dispositif de disjoncteur

Il existe un certain nombre de courants pour chacun desquels il est théoriquement possible de déterminer le temps d'arrêt maximal du réseau, allant de quelques secondes à plusieurs dizaines de minutes. Mais les faux positifs doivent également être exclus: si le courant pour le réseau est inoffensif, alors l'arrêt ne devrait pas se produire en une minute ou en une heure - jamais du tout.

Il s'avère que le point de consigne de la protection contre les surcharges doit être ajusté à une charge spécifique et changer ses plages. Et bien sûr, avant d'installer le dispositif de protection contre les surcharges, il doit être chargé et vérifié.

Ainsi, dans les «automates» modernes, il existe trois types de déclenchements: mécanique - pour allumer et éteindre manuellement, électromagnétique (solénoïde) - pour désactiver les courants de court-circuit, et le plus difficile - thermique pour se protéger contre les surcharges. C’est la caractéristique des déclencheurs thermiques et électromagnétiques qui est une caractéristique du disjoncteur, qui est indiquée par une lettre latine sur le corps devant le chiffre indiquant le courant nominal de l’appareil.

Cette caractéristique signifie:

a) la plage de fonctionnement de la protection contre les surcharges, due aux paramètres du bimétallique intégré, qui plie et coupe le circuit lorsqu'un courant électrique important le traverse. Le réglage fin est obtenu en ajustant la vis qui presse cette plaque;

b) la plage de fonctionnement de la protection de courant maximale due aux paramètres du solénoïde intégré.

Caractéristique temps-courant du disjoncteur

Ci-dessous, nous énumérons les caractéristiques des disjoncteurs modulaires, nous expliquerons comment ils diffèrent les uns des autres et quelles sont les machines qui les possèdent. Toutes les caractéristiques sont des dépendances entre le courant de charge et le temps d'arrêt à ce courant.

1) MA caractéristique - pas de dégagement thermique. En fait, ce n'est vraiment pas toujours nécessaire. Par exemple, la protection des moteurs électriques est souvent réalisée à l'aide de relais à courant maximal. Dans ce cas, un automate n'est nécessaire que pour se protéger contre les courants de court-circuit.

2) Caractéristique A. Le dégagement thermique de l'automate de cette caractéristique peut être déclenché à un courant de 1,3 de la valeur nominale. Dans le même temps, le temps sera d'environ une heure. À un courant dépassant la valeur nominale deux fois, un déclenchement électromagnétique peut prendre effet, déclenché en environ 0,05 seconde. Mais si le solénoïde ne fonctionne pas avec un excès de courant double, le dégagement thermique reste toujours «en jeu», déconnectant la charge en environ 20-30 secondes. À un courant dépassant la valeur nominale trois fois, il est garanti que le déclencheur électromagnétique fonctionne pendant des centièmes de seconde.

Les caractéristiques des disjoncteurs A sont installées dans les circuits où les surcharges transitoires ne peuvent pas se produire en mode de fonctionnement normal. Un exemple est le circuit contenant des dispositifs avec des éléments semi-conducteurs qui peuvent tomber en panne avec un léger excès de courant.

3) Caractéristique B. La caractéristique de ces automates diffère de la caractéristique A en ce que le déclencheur électromagnétique ne peut fonctionner qu’à un courant qui dépasse le courant nominal non pas deux, mais trois fois ou plus. Le temps de réponse du solénoïde n'est que de 0,015 seconde. Le dégagement thermique en triple surcharge de l'automate B fonctionnera dans 4-5 secondes. Le fonctionnement garanti de l'automate se produit avec une surcharge quintuple pour le courant alternatif et avec une charge supérieure à 7,5 fois la valeur nominale dans les circuits à courant continu.

Les caractéristiques des disjoncteurs B sont utilisées dans les réseaux d'éclairage, ainsi que dans d'autres réseaux dans lesquels l'augmentation de courant de démarrage est soit faible, soit totalement absente.

4) Caractéristique C. C'est la caractéristique la plus célèbre pour la plupart des électriciens. Les automates C se distinguent par une capacité de surcharge encore plus grande par rapport aux automates B et A. Ainsi, le courant de réponse minimal d’un déclencheur électromagnétique d’un automate de caractéristique C est cinq fois supérieur au courant nominal. Au même courant, le déclencheur thermique se déclenche au bout de 1,5 seconde et la libération garantie du déclencheur électromagnétique se produit avec une surcharge multipliée par 10 pour le courant alternatif et par une surcharge multipliée par 15 pour les circuits à courant continu.

Les disjoncteurs C sont recommandés pour une installation dans des réseaux à charge mixte, en supposant des courants d'appel modérés, en raison desquels les tableaux de distribution domestiques contiennent précisément ce type d'appareillage de commutation automatique.

Spécifications des disjoncteurs B, C et D

5) caractéristique D - a une très grande capacité de surcharge. Le courant d'actionnement minimal du solénoïde électromagnétique de cet automate est de dix courants nominaux et le déclenchement thermique peut être déclenché en 0,4 seconde. Le fonctionnement garanti est fourni avec une surintensité de vingt fois.

Les caractéristiques des disjoncteurs D sont principalement conçues pour le raccordement de moteurs électriques avec des courants de démarrage importants.

6) La caractéristique K se caractérise par une grande variation entre le courant maximum d'activation de l'électroaimant dans les circuits alternatif et continu. Le courant de surcharge minimal auquel le déclencheur électromagnétique peut être déclenché pour ces machines est de huit courants nominaux, et le courant de réponse garanti de la même protection est de 12 courants nominaux dans le circuit alternatif et de 18 courants nominaux dans le circuit alternatif. Le temps de réponse du déclencheur électromagnétique peut atteindre 0,02 seconde. Le dégagement thermique de l'automate K peut être déclenché avec un courant dépassant celui nominal de seulement 1,05 fois.

Du fait de ces caractéristiques de la caractéristique K, ces automates sont utilisés pour connecter une charge purement inductive.

7) La caractéristique Z présente également des différences dans les courants de fonctionnement garanti du déclencheur électromagnétique dans les circuits alternatifs et continus. Le courant minimum de déclenchement du solénoïde possible pour ces machines est de deux valeurs nominales et le courant de déclenchement garanti du déclencheur électromagnétique est de trois courants nominaux pour les circuits à courant alternatif et de 4,5 courants nominaux pour le circuit à courant continu. Le dégagement thermique des automates Z, comme celui des automates K, peut être déclenché à un courant de 1,05 de la valeur nominale.

Les machines Z ne sont utilisées que pour connecter des appareils électroniques.

Caractéristiques de déclenchement des disjoncteurs

Lors du choix d'un disjoncteur pour protéger l'équipement électrique, beaucoup prennent en compte les commutateurs de courant nominal, de tension et de pôles (unipolaire, bipolaire, tripolaire ou tétrapolaire). C'est vrai en principe, mais il y a un «mais».

En pratique, il existe des cas lorsqu’on choisit un disjoncteur pour protéger, par exemple, un moteur électrique asynchrone, en fonction des données nominales de la machine, et qu’on l’installe, lors du démarrage, le disjoncteur fonctionne et coupe le circuit. Quelle est la raison? Après tout, tout est choisi correctement, les courants correspondent, la tension aussi, avec le nombre de pôles, il est très difficile de prévoir, mais le commutateur automatique fonctionne au démarrage.

Le fait est qu’avec le démarrage direct d’un moteur électrique asynchrone, le courant du stator atteint environ sept courants nominaux. Par conséquent, le déclencheur automatique? Oui donc. Mais en choisissant une autre, la même machine, mais avec une caractéristique de réponse différente, ce système fonctionne bien.

Par conséquent, lorsque vous choisissez un disjoncteur, vous devez prêter attention à ses caractéristiques de réponse et les comparer à votre programme de charge. Regardons les principales caractéristiques des disjoncteurs.

MA caractéristique

Ce type de disjoncteur ne comporte pas de déclenchement thermique et n’est applicable que pour la protection contre les courts-circuits. Le plus souvent applicable dans les circuits de protection d'entraînements électriques, où la protection contre les surcharges est implémentée d'une autre manière (relais de courant, systèmes à microprocesseur).

Caractéristique A

Conçu pour protéger les circuits qui ne fournissent pas de surintensité. Cela peut être un dysfonctionnement des dispositifs à semi-conducteurs lorsque les valeurs de courant spécifiées sont dépassées. Le graphique de cette caractéristique est présenté ci-dessous:

Comme on le voit sur le graphique en cas de surcharge 1.13 -1.45 In le dégagement thermique peut fonctionner en moins de 60 minutes et 2 à 3 fois plus, presque instantanément.

Caractéristique B

Ce type de protection est souvent utilisé pour des équipements informatiques et électroniques ou dans des systèmes où les pics de démarrage sont faibles et où le système est soumis à de très faibles surcharges. Le tableau est ci-dessous:

Avec les modes à long terme, il ne diffère pas des caractéristiques de A, mais peut, au démarrage, supporter un courant supérieur de 3 à 5 valeurs nominales.

Caractéristique Avec

La caractéristique la plus commune des disjoncteurs automatiques. Il est utilisé dans presque tous les systèmes d'alimentation avec des courants de démarrage modérés. Cet appareil peut donc être vu dans presque tous les tableaux. Le tableau ci-dessous:

Comme vous pouvez le constater, leur capacité de surcharge est comprise entre 5 et 10 dénominations. Ce qui leur permet de passer des valeurs modérées d’un temps court au démarrage.

Caractéristique D

Applicable à la protection des moteurs électriques, qui démarrent directement à partir du réseau sans utiliser de convertisseurs et qui présentent des sauts importants de courants de démarrage, ainsi que pour d'autres dispositifs présentant des surcharges importantes à court terme. Le tableau ci-dessous:

Dans ces appareils, les surcharges à court terme peuvent atteindre 10 à 20 cotes.

Caractéristique K

Ce type d’automate a une plage de variation du courant de fonctionnement assez large lorsqu’il fonctionne à tension constante et alternative et est utilisé, en règle générale, dans les circuits à charge inductive, parfois pour les moteurs électriques et divers convertisseurs de puissance. La courbe de réponse est indiquée ci-dessous:

Comme nous pouvons le constater, à la «pause», la plage d’arrêt est comprise entre 10 et 15 nominaux, avec une «constante» entre 10 et 25 nominaux.

Z caractéristique

Il présente également une variation lorsqu’il fonctionne à tension constante et alternative et est conçu pour offrir une protection maximale aux dispositifs de commande électroniques. La courbe de travail est indiquée ci-dessous:

Lors du fonctionnement en tension alternative, la déconnexion se produit lorsque 2 - 3 valeurs nominales sont atteintes, avec une valeur constante de 2 - 5.

Comme vous pouvez le constater, le choix d’un disjoncteur pour protéger les circuits électriques n’est pas une tâche aussi simple qu’il semble au premier abord. Par conséquent, lors du choix d'un disjoncteur, il est nécessaire de comparer non seulement les données nominales (tension, courant, phase), mais également de connaître les caractéristiques du système pour lequel le disjoncteur est sélectionné, afin que le disjoncteur de votre choix protège pleinement votre équipement.

Caractéristiques actuelles des disjoncteurs

Bonjour, chers lecteurs du site http://elektrik-sam.info.

Dans cet article, nous examinerons les caractéristiques principales des disjoncteurs que vous devez connaître pour pouvoir naviguer correctement lors de leur choix: il s'agit des caractéristiques de courant nominal et de courant temporel des disjoncteurs.

Permettez-moi de vous rappeler que cette publication est incluse dans une série d'articles et de vidéos sur les dispositifs de protection électrique du cours Disjoncteurs, DDR, Difavtomaty - un guide détaillé.

Les caractéristiques principales du disjoncteur sont indiquées sur son boîtier, où la marque ou la marque du fabricant et le numéro de catalogue ou de série sont également appliqués.

La caractéristique la plus importante d'un disjoncteur est le courant nominal. C'est le courant maximal (en ampères) pouvant traverser indéfiniment la machine sans déconnecter le circuit protégé. Lorsque le flux de courant dépasse cette valeur, l'automate s'active et ouvre le circuit protégé.

La plage de valeurs du courant nominal des disjoncteurs est normalisée et est:

6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100A.

La valeur du courant nominal de l'automate est indiquée sur son boîtier en ampères et correspond à une température ambiante de + 30˚С. Lorsque la température augmente, la valeur du courant nominal diminue.

De plus, les automates des tableaux électriques sont généralement installés en plusieurs pièces les unes à la suite des autres, ce qui entraîne une augmentation de la température (les automates se «réchauffent») et une diminution de la valeur du courant commuté par ces derniers.

Certains fabricants de disjoncteurs spécifient des facteurs de correction dans les catalogues pour prendre en compte ces paramètres.

Pour plus de détails sur les effets de la température ambiante et sur le nombre d'appareils de protection installés, voir l'article Pourquoi un disjoncteur se déclenche par temps chaud.

Au moment de la connexion de certains consommateurs au réseau électrique, par exemple des réfrigérateurs, des aspirateurs, des compresseurs, etc., des courants de démarrage apparaissent brièvement dans le circuit, ce qui peut dépasser plusieurs fois le courant nominal de la machine. Pour le câble, un tel courant de surcharge à court terme n’est pas terrible.

Par conséquent, pour éviter que la machine ne s'éteigne à chaque fois avec une légère augmentation à court terme du courant dans le circuit, des machines présentant différents types de caractéristiques temps-courant sont utilisées.

Ainsi, la caractéristique principale suivante:

La caractéristique de réponse temps-courant d'un disjoncteur est la dépendance du temps de déclenchement du circuit protégé en fonction de l'intensité du courant qui le traverse. Le courant est indiqué en tant que rapport au courant nominal I / In, c.-à-d. combien de fois le courant traversant le disjoncteur dépasse le courant nominal de ce disjoncteur.

L'importance de cette caractéristique réside dans le fait que les automates ayant la même valeur nominale seront éteints différemment (en fonction du type de caractéristique temps-courant). Cela permet de réduire le nombre de fausses alarmes en utilisant des disjoncteurs ayant des caractéristiques de courant différentes pour différents types de charge,

Considérons les types de caractéristiques temps-courant:

- Le type A (2 à 3 valeurs de courant nominal) est utilisé pour protéger les circuits avec une grande longueur de câblage et pour protéger les dispositifs à semi-conducteurs.

- Le type B (3 à 5 valeurs du courant nominal) est utilisé pour protéger les circuits avec une faible valeur de la multiplicité du courant de démarrage avec une charge principalement active (lampes à incandescence, appareils de chauffage, appareils de chauffage, systèmes d'éclairage à usage général). Montré pour une utilisation dans des appartements et des bâtiments résidentiels où les charges sont principalement actives.

- Le type C (5-10 valeurs de courant nominal) est utilisé pour protéger les circuits d'installations avec des courants de démarrage modérés - climatiseurs, réfrigérateurs, prises de courant domestiques et de bureau, lampes à décharge de gaz avec courant de démarrage accru.

- Le type D (10 à 20 valeurs du courant nominal) est utilisé pour protéger les circuits alimentant des installations électriques avec des courants de démarrage élevés (compresseurs, mécanismes de levage, pompes, machines). Ils sont installés principalement dans des locaux industriels.

- Le type K (8-12 valeurs de courant nominal) est utilisé pour protéger les circuits à charge inductive.

- Le type Z (2,5-3,5 valeurs de courant nominal) est utilisé pour protéger les circuits avec des appareils électroniques sensibles aux surintensités.

Dans la vie courante, on utilise très rarement des disjoncteurs ayant les caractéristiques B, C et très rarement D. Le type de caractéristique est indiqué sur le corps de l'automate par une lettre latine avant la valeur nominale du courant.

Le marquage "C16" sur le disjoncteur indiquera qu’il présente le type de déclenchement instantané C (c’est-à-dire qu’il est déclenché lorsque le courant est égal à 5 ​​à 10 fois le courant nominal) et que le courant nominal est à 16 A.

La caractéristique temps-courant d'un disjoncteur est généralement donnée sous forme de graphique. L'axe horizontal indique la multiplicité du courant nominal et l'axe vertical indique le temps de réponse de l'automate.

Le large éventail de valeurs sur le graphique est dû à la variation des paramètres des disjoncteurs, qui dépendent de la température, externe et interne, car le disjoncteur est chauffé par un courant électrique le traversant, notamment dans des conditions d'urgence, par un courant de surcharge ou un courant de court-circuit (SC).

Le graphique montre que lorsque la valeur I / I≤≤ 1, le temps de déclenchement du disjoncteur tend vers l'infini. En d’autres termes, tant que le courant traversant le disjoncteur est inférieur ou égal au courant nominal, le disjoncteur ne se déclenchera pas (s’éteindra).

Le graphique montre également que plus la valeur de I / In est élevée (c’est-à-dire que plus le courant traversant le disjoncteur dépasse la valeur nominale), plus le disjoncteur s’éteint rapidement.

Lorsqu’il passe par un disjoncteur automatique dont la valeur est égale à la limite inférieure de la plage de fonctionnement du déclencheur électromagnétique (3In pour "B", 5In pour "C" et 10In pour "D"), il doit s’éteindre pendant plus de 0,1 seconde.

Lorsque le courant est égal à la limite supérieure de la plage de fonctionnement du déclencheur électromagnétique (5In pour «B», 10In pour «C» et 20In pour «D»), le disjoncteur s'éteindra en moins de 0,1 s. Si le courant du circuit principal se situe dans la plage des courants de déclenchement instantanés, le disjoncteur se déclenche avec un léger retard ou sans retard (moins de 0,1 s).

Dans les articles suivants, nous continuerons d’examiner les caractéristiques des disjoncteurs, la méthode et la stratégie de calcul et de sélection. Si vous souhaitez ne pas manquer de nouveaux documents intéressants sur ce sujet - abonnez-vous au site de nouvelles, le formulaire d’abonnement au bas de l’article.

En conclusion de l'article, une vidéo détaillée de la classification et des caractéristiques actuelles des disjoncteurs:

Disjoncteurs - comment choisir, caractéristiques, protection graphique

Les interrupteurs automatiques (AV) sont conçus pour allumer et éteindre les moteurs électriques asynchrones et autres récepteurs d’électricité, ainsi que pour les protéger de la surcharge et des courants de court-circuit.

Les machines automatiques permettent l’arrêt simultané des trois phases en cas d’urgence. En mode de fonctionnement, l'allumage et l'extinction sont effectués manuellement, tandis qu'en mode d'urgence, ils sont automatiquement désactivés par un déclencheur électromagnétique, thermique ou électronique.

Conception de disjoncteur

Une partie importante de la machine est la libération, qui contrôle le paramètre spécifié du réseau protégé et agit sur le périphérique de libération, ce qui éteint la machine. Les plus courants sont les types d’unités de voyage suivantes:

  1. électromagnétique (pour la protection contre les courants de court-circuit);
  2. thermique (pour la protection contre les surcharges);
  3. combiné, y compris électronique.

Le déclencheur électromagnétique comprend une bobine à noyau mobile et un ressort de rappel. Lorsqu'un courant de court-circuit traverse la bobine, le noyau se rétracte instantanément et agit sur le rail de déclenchement du mécanisme à déclenchement libre.

Le déclencheur thermique est une plaque bimétallique connectée en série avec le contact. Lorsqu'il est chauffé par un courant de surcharge, il se plie et agit sur le mécanisme de déclenchement du mécanisme à déclenchement libre.

Une vidéo intéressante sur les disjoncteurs, voir ci-dessous:

Il existe des disjoncteurs non limitants et limiteurs de courant.

  1. Les commutateurs sans limite ne limitent pas le courant CKD dans le circuit et atteignent la valeur maximale attendue.
  2. Les interrupteurs limiteurs de courant limitent le CKD en introduisant rapidement une résistance d'arc supplémentaire dans le circuit (dans la première demi-période, avant que le CKC n'augmente de manière significative), puis en déconnectant rapidement le court-circuit. Dans ce cas, le CKD actuel n'atteint pas la valeur maximale calculée attendue. La limitation de courant commence avec une certaine valeur de courant, déterminée par la caractéristique de limitation de courant (Fig. 6.1).

Par exemple, les commutateurs de la série Compact NS (Merlin Gerin) ont une capacité de limitation de courant exceptionnelle en raison de la technologie de déconnexion double (séparation très rapide des contacts sous l'action de forces électrodynamiques et apparition de deux tensions successives d'une décharge en arc avec un front d'onde raide).

Sélection des disjoncteurs

Le choix des interrupteurs automatiques est fait:

  1. par courant nominal
  2. temps de réponse (BTX),
  3. pouvoir de coupure, conditions d'installation et de fonctionnement.

Le choix correct des caractéristiques du disjoncteur est la clé de son bon fonctionnement.

Comment choisir le bon disjoncteur, voir la vidéo ci-dessous:

Courant nominal et tension

Le courant nominal In et la tension U du disjoncteur sont les valeurs du courant et de la tension que peuvent supporter les parties principales de l'interrupteur transportant du courant en fonctionnement continu. Le courant nominal du commutateur de déclenchement peut différer du courant nominal de l'automate, car des disjoncteurs ayant un courant nominal inférieur peuvent être intégrés à la machine.

Une autre caractéristique non moins importante d’un disjoncteur est sa capacité de commutation limite (PKS). PKS appelle la valeur maximale du courant de court-circuit, que l'interrupteur peut activer et désactiver plusieurs fois, tout en restant en bon état.

Fonctions de protection contre le temps

Les disjoncteurs peuvent avoir les caractéristiques de protection temps-courant suivantes (BTX) (Fig. 6.2) [11]:

  1. dépend du courant BTX. De tels commutateurs ont seulement un dégagement thermique et sont rarement utilisés en raison de PKS et d'une vitesse insuffisantes.
  2. indépendant du courant BTX. Ces interrupteurs ont uniquement une coupure de courant, réalisée avec un déclencheur électromagnétique ou à semi-conducteur, fonctionnant sans ou avec une temporisation;
  3. ATX à deux étages dépendant du courant. Dans la zone des courants de surcharge, le commutateur est désactivé avec une temporisation en fonction du temps, dans la zone des courants de court-circuit, il est désactivé par une coupure de courant avec une temporisation préréglée en courant (pour les commutateurs sélectifs) ou sans temporisation (pour les commutateurs non sélectifs); le disjoncteur comporte soit un déclencheur thermique et électromagnétique (combiné), soit un déclencheur électromagnétique à deux étages ou un déclencheur à semi-conducteur;
  4. VTH de protection à trois étages. Dans la zone des courants de surcharge, le commutateur est désactivé avec une temporisation en fonction du temps, dans la zone des courants de court-circuit - avec une temporisation indépendante prédéfinie (zone de coupure sélective) et avec des courts-circuits rapprochés - sans temporisation (zone de déclenchement instantané); la zone de fonctionnement instantané est conçue pour réduire la durée d'exposition aux courants avec court-circuit proche. De tels commutateurs ont un déclencheur à semi-conducteur et sont utilisés pour protéger les entrées dans les lignes QFT et sortantes.

Conformément aux normes de la Commission électrotechnique internationale (CEI), en fonction du temps et des caractéristiques de réponse actuelles, il existe trois types de commutateurs: B, C et D (Fig. 6.3).

Caractéristiques de sécurité des disjoncteurs

  1. dépendant
  2. indépendant;
  3. dépendant limité;
  4. en trois étapes;
    • avec temporisation avec court-circuit;
    • sans temporisation avec court-circuit.

Caractéristiques de temporisation des disjoncteurs

t est le temps de réponse du déclencheur électromagnétique, k = I / In est le rapport du courant à la valeur nominale.

Le type B est la valeur du courant d'ouverture du déclencheur électromagnétique de la multiplicité k = 3 - 6. Pour un usage domestique, où le courant de charge est faible et où le courant de court-circuit peut pénétrer dans la zone de fonctionnement du déclencheur thermique plutôt que du déclencheur électromagnétique.

Le type C est l’intensité du courant d’ouverture du déclencheur électromagnétique de la multiplicité k = 5 - 10. Pour les applications domestiques et industrielles: pour les moteurs avec un temps de démarrage jusqu’à 1 s, les charges avec de faibles courants inductifs (machines frigorifiques et climatiseurs).

Le type D est l'amplitude du courant d'ouverture d'un déclencheur électromagnétique d'une multiplicité k> 10. Il est utilisé pour les moteurs puissants avec un temps de démarrage long.

Figure - Caractéristiques des disjoncteurs B, C, D, Z, K et S

Les rejets thermiques utilisés dans les disjoncteurs sont sensibles à la chaleur provenant de sources étrangères. En pratique, il arrive souvent que le déclencheur de pôle intermédiaire ne soit désactivé en mode nominal que par le chauffage des pôles adjacents. Cela conduit à la limitation de son domaine d'utilisation et à la correction du courant nominal en tenant compte du graphique de la Fig. 6.4.

Fig.6.4. Dépendance de la capacité de charge de AB à leur emplacement proche: Kn = I / Facteur de charge, N - le nombre de disjoncteurs placés côte à côte.

Caractéristiques de charge des disjoncteurs

La caractéristique de charge de la plupart des disjoncteurs dépend de la température ambiante: quand elle diminue, le facteur de charge augmente, et quand il augmente, il diminue (fig.6.5). Ceci limite la possibilité d'utilisation dans des conditions de température de fonctionnement extrêmes, notamment dans des ateliers chauds ou à l'air libre.

La séparation des fonctions des dispositifs de protection sur plusieurs dispositifs indépendants crée de nombreux inconvénients lors de l'installation et du fonctionnement.

Chacun d'entre eux ne possède pas l'universalité et ne convient que pour un disjoncteur spécifique.

Par conséquent, les développeurs sont confrontés au problème de la création d'un périphérique universel.

Les disjoncteurs de dernière génération sont équipés de déclencheurs électroniques, offrant une protection complète du moteur électrique et combinant les fonctions de tous les déclencheurs susmentionnés dans un seul appareil.

Ils sont fabriqués sur la base de la technologie des microprocesseurs, garantissent une précision de fonctionnement, une fiabilité et une résistance élevées aux conditions de température.

L’alimentation nécessaire au bon fonctionnement est fournie directement par les transformateurs de courant du déclencheur.

Les déclencheurs de protection se composent de trois ou quatre transformateurs de courant (selon le type de réseau), de l’unité électronique et du mécanisme de déclenchement, qui agit directement sur le mécanisme de commutation.

La courbe de déclenchement de l'interrupteur, aussi proche que possible des caractéristiques de fonctionnement d'un moteur électrique asynchrone (Fig.6.6), définit les types de protection suivants [19]:

  • protection contre la surcharge avec temporisation inverse;
  • protection contre le grippage du rotor d'un moteur électrique avec un certain délai;
  • protection avec court-circuit avec fonctionnement instantané.

Une vidéo intéressante sur les caractéristiques des machines, voir la vidéo ci-dessous:

Principales caractéristiques techniques des disjoncteurs

Dans la pratique, il est important non seulement de connaître les caractéristiques des disjoncteurs, mais également de comprendre leur signification. Grâce à cette approche, vous pouvez décider de la plupart des problèmes techniques. Regardons ce que signifient ces paramètres ou d’autres paramètres indiqués sur l’étiquette.

Abréviation utilisée.

Les dispositifs de marquage contiennent toutes les informations nécessaires décrivant les caractéristiques principales des disjoncteurs (ci-après AB). Ce qu'ils veulent dire sera expliqué ci-dessous.

Caractéristique temps-courant (BTX)

En utilisant cet affichage graphique, il est possible d'obtenir une représentation visuelle des conditions dans lesquelles le mécanisme de mise hors tension du circuit sera activé (voir Fig. 2). Sur le graphique, l’échelle verticale indique le temps requis pour l’activation de l’AB. L'échelle horizontale indique le rapport I / In.

Fig. 2. Affichage graphique des caractéristiques actuelles des types d'automates les plus courants.

La surintensité admissible détermine le type de caractéristiques temps-courant des déclencheurs dans les appareils produisant un arrêt automatique. Conformément à la réglementation en vigueur (GOST P 50345-99), une désignation spécifique est attribuée à chaque type (à partir de lettres latines). Le dépassement admissible est déterminé par le coefficient k = I / In. Pour chaque type, les valeurs standard sont fournies (voir Figure 3):

  • "A" - maximum - trois fois l'excédent;
  • "B" - de 3 à 5;
  • "C" - 5-10 fois plus régulier;
  • "D" - 10 à 20 fois l'excédent;
  • "K" - de 8 à 14;
  • "Z" - 2-4 employés supplémentaires.
Figure 3. Paramètres d'activation de base pour différents types

Notez que ce tableau décrit complètement les conditions d'activation du solénoïde et du thermoélément (voir Fig. 4).

Affichage sur le graphique des zones de fonctionnement du solénoïde et du thermoélément

Compte tenu de tout ce qui précède, nous pouvons résumer que la principale caractéristique protectrice de l’AB est due à la dépendance temps-courant.

La liste des caractéristiques temps-courant typiques.

Après avoir décidé du marquage, nous passons en revue les différents types d’appareils répondant à une classe particulière en fonction des caractéristiques.

Caractéristiques du courant de temps de table des disjoncteurs

Caractéristique de type "A"

La protection thermique AB de cette catégorie est activée lorsque le rapport entre le courant du circuit et le courant nominal (I / In) dépassera 1,3. Dans ces conditions, l’arrêt aura lieu après 60 minutes. Lorsque le courant nominal est dépassé, le temps de déclenchement est réduit. La protection électromagnétique est activée lorsque la valeur nominale est doublée, le taux de réponse est de 0,05 seconde.

Ce type est établi dans des chaînes non sujettes à des surcharges à court terme. A titre d'exemple, nous pouvons prendre des circuits sur des éléments semi-conducteurs, en cas de défaillance de ceux-ci, le dépassement de courant est insignifiant. Dans la vie quotidienne, ce type n'est pas utilisé.

Caractéristique "B"

La différence de ce type avec le précédent est dans le courant de fonctionnement, il peut dépasser la norme de trois à cinq fois. Dans ce cas, le mécanisme à solénoïde est activé avec une charge quintuple (temps de mise hors tension - 0,015 sec.), Le thermoélément - trois fois (pas plus de 4-5 s. Il faut l'éteindre).

De tels types de dispositifs ont trouvé une application dans les réseaux pour lesquels des courants d'appel élevés ne sont pas caractéristiques, par exemple les circuits d'éclairage.

S201 fabriqué par ABB avec caractéristique temps-courant B

Caractéristique "C"

C'est le type le plus courant, sa surcharge admissible est supérieure à celle des deux types précédents. Lorsque le mode nominal est dépassé cinq fois, le thermoélément est déclenché. Il s’agit d’un circuit qui coupe l’alimentation en l’espace d’une seconde et demie. Le mécanisme de solénoïde est activé lorsque la surcharge dépasse d'un facteur 10 la norme.

Les données AB sont conçues pour protéger le circuit électrique dans lequel peut se produire un courant de démarrage modéré, caractéristique d'un réseau domestique caractérisé par une charge mixte. Achat d'un appareil pour la maison, il est recommandé d'opter pour ce formulaire.

Machine Triplex Legrand

Caractéristique "D"

Pour AB, ce type est caractérisé par des caractéristiques de surcharge élevées. À savoir, un excès de dix fois supérieur à la norme pour un thermoélément et vingt fois plus pour un solénoïde.

Appliquez de tels dispositifs dans des chaînes avec des courants de démarrage importants. Par exemple, pour protéger les dispositifs de démarrage des moteurs électriques asynchrones. La figure 9 montre deux instruments de ce groupe (a et b).

Figure 9. a) BA51-35; b) BA57-35; c) BA88-35

Caractéristique "K"

L'activation du mécanisme à solénoïde est possible dans de tels cas lorsque la charge de courant est dépassée 8 fois, et il est garanti qu'elle se produira lorsqu'il y a une surcharge en mode normal douze fois (dix-huit fois pour une tension constante). Le temps de chargement n’est pas supérieur à 0,02 sec. Quant au thermoélément, son activation est possible au-delà de 1,05 à partir du mode normal.

Domaine d'application - circuits à charge inductive.

Caractéristique "Z"

Ce type se distingue par un petit excédent admissible du courant nominal, la limite minimale étant deux fois la norme, la maximale quatre. Les paramètres de fonctionnement du thermoélément sont les mêmes que ceux du AB avec la caractéristique K.

Cette sous-espèce est utilisée pour connecter des appareils électroniques.

Caractéristique "MA"

Une particularité de ce groupe est qu'un thermoélément n'est pas utilisé pour déconnecter la charge. C'est-à-dire que l'appareil ne protège que des courts-circuits, il suffit amplement de brancher un moteur électrique. La figure 9 montre une telle adaptation (c).

Courant de travail nominal

Ce paramètre décrit la valeur maximale autorisée pour un fonctionnement normal. Lorsque cette valeur est dépassée, le système de délestage de charge est activé. La figure 1 montre où cette valeur est affichée (les produits IEK sont pris à titre d'exemple).

Courant de travail régulier encerclé

Paramètres thermiques

Le terme fait référence aux conditions de fonctionnement du thermoélément. Ces données peuvent être obtenues à partir de la planification temps-courant correspondante.

Capacité de rupture ultime (PKS).

Ce terme désigne la valeur de charge maximale admissible à laquelle l’appareil peut ouvrir le circuit sans perte de performance. Sur la figure 5, ce marquage est indiqué par un ovale rouge.

Fig. 5. La société d'appareils Schneider Electric

Catégories limites actuelles

Ce terme est utilisé pour décrire la capacité d'un AB à déconnecter un circuit avant que son courant de court-circuit n'atteigne son maximum. Les adaptations sont disponibles avec trois catégories de limitation de courant, en fonction du temps de charge:

  1. 10 ms et plus encore
  2. de 6 à 10 ms;
  3. 2,5-6 ms.

En conséquence, plus la catégorie est haute, moins le câblage électrique est exposé à la chaleur et, par conséquent, le risque d'inflammation est réduit. Sur la figure 6, cette catégorie est entourée en rouge.

Le marquage BA47-29 contient une indication de la classe de limite de courant

Notez que les AB de la première catégorie peuvent ne pas avoir un étiquetage approprié.

Un petit bidon de vie sur la façon de choisir le bon commutateur pour la maison

Nous proposons des recommandations générales:

  • Sur la base de tout ce qui précède, nous devrions opter pour l’AB avec la caractéristique temporelle "C".
  • Lors du choix des paramètres standard, il est nécessaire de prendre en compte la charge prévue. Pour calculer, il faut utiliser la loi d'Ohm: I = P / U, où P est la puissance du circuit, U est la tension. Après avoir calculé l'intensité du courant (I), nous choisissons la valeur nominale AB conformément au tableau de la figure 10. Figure 10. Graphique permettant de choisir AB en fonction du courant de charge

Voyons comment utiliser le calendrier. Par exemple, en calculant le courant de charge, nous avons obtenu le résultat - 42 A. Vous devez choisir un automate, où cette valeur sera dans la zone verte (zone de travail), elle sera égale à 50 A. Le choix doit également prendre en compte la force de courant pour laquelle le câblage est conçu.. Autorisé à sélectionner la machine sur la base de cette valeur, à condition que le courant de charge total soit inférieur au courant calculé pour le câblage.

  • Si l’installation d’un disjoncteur différentiel ou d’un disjoncteur différentiel est prévue, il est nécessaire d’assurer la mise à la terre, sinon ces dispositifs risquent de ne pas fonctionner correctement;
  • Il est préférable de privilégier les produits de grandes marques, ils sont plus fiables et durent plus longtemps que les produits chinois.
  • Catégories de disjoncteurs: A, B, C et D

    Les disjoncteurs sont des dispositifs chargés de protéger un circuit électrique des dommages causés par une exposition à un courant important. Un flux d'électrons trop important peut endommager les appareils ménagers et provoquer une surchauffe du câble, entraînant une refusion et une inflammation. Si la ligne n’est pas mise hors tension à temps, un incendie risque de se produire.Par conséquent, conformément aux exigences des Règles pour les installations électriques (Règles pour l’installation électrique), le fonctionnement du réseau dans lequel les disjoncteurs électriques ne sont pas installés est interdit. AB a plusieurs paramètres, dont l’un est la caractéristique de courant temporel du commutateur de protection automatique. Dans cet article, nous expliquerons la différence entre les disjoncteurs des catégories A, B, C, D et la protection des réseaux pour lesquels ils sont utilisés.

    Caractéristiques des machines de protection de réseau

    Quelle que soit la classe à laquelle appartient un disjoncteur, sa tâche principale est toujours la même: détecter rapidement un courant excessif et mettre le réseau hors tension avant que le câble et les dispositifs connectés à la ligne ne soient endommagés.

    Les courants qui peuvent être dangereux pour le réseau sont divisés en deux types:

    • Courants de surcharge. Leur apparition est le plus souvent due à l'inclusion dans le réseau de périphériques dont la puissance totale est supérieure à celle que la ligne est capable de supporter. Une autre cause de surcharge est la défaillance d’un ou de plusieurs périphériques.
    • Surintensité provoquée par un court-circuit. Un court-circuit se produit lorsque les conducteurs de phase et de neutre sont interconnectés. À l'état normal, ils sont connectés à la charge séparément.

    L'appareil et le principe de fonctionnement du disjoncteur - dans la vidéo:

    Surintensité

    Leur taille dépasse le plus souvent légèrement la valeur nominale de l'automate, de sorte que le passage d'un tel courant électrique le long du circuit, s'il ne dure pas trop longtemps, n'endommage pas la ligne. À cet égard, une mise hors tension instantanée dans ce cas n'est pas nécessaire, de plus, le flux d'électrons revient souvent souvent à la normale. Chaque AB est conçu pour un certain excès du courant électrique auquel il est déclenché.

    Le temps de réponse d'un disjoncteur de protection dépend de l'ampleur de la surcharge: avec un léger dépassement de la norme, cela peut prendre une heure ou plus, et pour une heure significative, quelques secondes.

    Pour déconnecter la puissance sous l'influence d'une charge puissante répond au dégagement thermique, qui est basé sur une plaque bimétallique.

    Cet élément est chauffé sous l'influence d'un courant puissant, il devient plastique, se plie et provoque un déclenchement automatique.

    Courants de court-circuit

    Le flux d'électrons provoqué par un court-circuit dépasse largement la valeur du dispositif de protection, ce qui le déclenche immédiatement et coupe l'alimentation. Pour la détection de court-circuit et la réponse immédiate de l'appareil est responsable de libération électromagnétique, qui est un solénoïde avec un noyau. Ce dernier, sous l’influence d’une surintensité, affecte instantanément l’interrupteur et le déclenche. Ce processus prend une fraction de seconde.

    Cependant, il y a une nuance. Parfois, le courant de surcharge peut aussi être très important, mais pas par court-circuit. Comment l'appareil devrait-il déterminer la différence entre eux?

    Dans la vidéo sur la sélectivité des commutateurs automatiques:

    Ici, nous passons en douceur à la question principale à laquelle notre matériel est consacré. Comme nous l’avons dit, il existe plusieurs classes d’AB, dont les caractéristiques diffèrent d’un moment à l’autre. Les plus courants d'entre eux, utilisés dans les réseaux électriques domestiques, sont les dispositifs des classes B, C et D. Les disjoncteurs appartenant à la catégorie A sont beaucoup moins courants. Ils sont les plus sensibles et sont utilisés pour protéger les instruments de précision.

    Entre eux, ces dispositifs diffèrent par les déclenchements instantanés actuels. Sa valeur est déterminée par la multiplicité du courant traversant le circuit jusqu'à la valeur nominale de l'automate.

    Caractéristiques de déclenchement des disjoncteurs

    La classe AB, déterminée par ce paramètre, est indiquée par la lettre latine et est apposée sur le corps de la machine devant le numéro correspondant au courant nominal.

    Conformément à la classification établie par l'EMP, les automates de protection sont divisés en plusieurs catégories.

    Machines de type MA

    Une caractéristique distinctive de tels dispositifs est l'absence de dégagement thermique en eux. Les appareils de cette classe sont installés dans les circuits de connexion de moteurs électriques et d’autres unités puissantes.

    La protection contre les surcharges dans de telles lignes fournit un relais de surintensité, le disjoncteur protège uniquement le réseau des dommages dus aux courts-circuits de surintensité.

    Appareils de classe A

    Les machines de type A, comme on l'a dit, ont la plus grande sensibilité. Le dégagement thermique dans les appareils avec la caractéristique temps-courant A se déclenche le plus souvent lorsque l'ampérage AB est dépassé de 30%.

    La bobine de déclenchement électromagnétique met le réseau hors tension pendant environ 0,05 seconde si le courant électrique dans le circuit dépasse la valeur nominale de 100%. Si, pour quelque raison que ce soit, après avoir doublé la puissance du flux d'électrons d'un facteur deux, le solénoïde électromagnétique ne fonctionnait pas, le déclencheur bimétallique l'éteint pendant 20-30 secondes.

    Les machines avec la caractéristique de chronométrage A sont incluses dans les lignes, durant lesquelles même les surcharges à court terme sont inacceptables. Ceux-ci incluent des circuits contenant des éléments semi-conducteurs.

    Dispositifs de sécurité de classe B

    Les dispositifs de la catégorie B ont une sensibilité moins grande que ceux associés au type A. Leur déclenchement électromagnétique se déclenche lorsque le courant nominal est supérieur de 200% et que le temps de réponse est de 0,015 seconde. Le fonctionnement du bilame dans le disjoncteur avec la caractéristique B avec un excès similaire de la valeur nominale de AB prend 4-5 secondes.

    Les équipements de ce type sont destinés à être installés sur des lignes comprenant des prises de courant, des dispositifs d’éclairage et d’autres circuits où l’augmentation du courant électrique au démarrage est absente ou a une valeur minimale.

    Machines de catégorie C

    Les périphériques de type C sont les plus courants dans les réseaux domestiques. Leur capacité de surcharge est même supérieure à celle décrite précédemment. Pour que le solénoïde de déclenchement électromagnétique soit installé dans un tel instrument, il est nécessaire que le flux d'électrons le traversant dépasse la valeur nominale 5 fois. Le dégagement thermique déclenche avec un excès de cinq fois supérieur à la valeur de l'appareil de protection en 1,5 seconde.

    L’installation de disjoncteurs avec la caractéristique temporelle C, comme nous l’avons dit, se fait généralement dans les réseaux domestiques. Ils font un excellent travail en jouant le rôle de périphériques d’entrée pour protéger l’ensemble du réseau, tandis que les appareils de catégorie B sont bien adaptés aux succursales individuelles auxquelles des groupes de prises et des appareils d’éclairage sont connectés.

    Cela permettra d’observer la sélectivité des automates protecteurs (sélectivité) et, avec un court-circuit dans l’une des branches, il n’y aura pas de mise hors tension de toute la maison.

    Disjoncteurs Catégorie D

    Ces appareils ont la plus grande capacité de surcharge. Pour le fonctionnement d'une bobine électromagnétique installée dans un appareil de ce type, il est nécessaire que le courant électrique du disjoncteur de protection soit dépassé au moins 10 fois.

    Dans ce cas, le dégagement thermique déclenche en 0,4 seconde.

    Les dispositifs présentant la caractéristique D sont le plus souvent utilisés dans les réseaux généraux de bâtiments et de structures, où ils jouent un rôle de filet de sécurité. Ils se déclenchent s’il n’ya pas de coupure de courant ponctuelle provoquée par des disjoncteurs dans des pièces séparées. Ils sont également installés dans des circuits avec une grande quantité de courants de démarrage, auxquels sont connectés par exemple des moteurs électriques.

    Dispositifs de sécurité des catégories K et Z

    Les automates de ces types sont beaucoup moins courants que ceux décrits ci-dessus. Les appareils de type K présentent une grande variation des valeurs de courant requises pour le déclenchement électromagnétique. Ainsi, pour un circuit à courant alternatif, cet indicateur doit dépasser la valeur nominale de 12 fois et pour une valeur constante de -18. Le fonctionnement d'un solénoïde électromagnétique se produit en 0,02 seconde au maximum. Le dégagement thermique de ces équipements peut se produire si le courant nominal n’est dépassé que de 5%.

    Ces caractéristiques sont dues à l'utilisation de dispositifs de type K dans des circuits avec des charges extrêmement inductives.

    Les dispositifs de type Z ont également des courants de déclenchement différents du solénoïde du déclenchement électromagnétique, mais la propagation n’est pas aussi grande que dans la catégorie AV de catégorie K. Pour les déconnecter, le courant nominal doit être de trois fois, et dans les réseaux à courant continu, la valeur du courant électrique doit être égale à 4,5 fois la valeur nominale.

    Les dispositifs à caractéristique Z ne sont utilisés que sur les lignes auxquelles des appareils électroniques sont connectés.

    Clairement sur les catégories de machines sur la vidéo:

    Conclusion

    Dans cet article, nous avons examiné les caractéristiques de courant temporel des automates de protection, la classification de ces dispositifs conformément à l'EMP, ainsi que les circuits installés pour les dispositifs de différentes catégories. Les informations résultantes vous aideront à déterminer quel équipement de protection doit être utilisé sur le réseau, en fonction des appareils qui y sont connectés.

    Quelles sont les caractéristiques de courant temporel des disjoncteurs

    Lors du fonctionnement normal du réseau électrique et de tous les appareils, un courant électrique traverse le disjoncteur. Toutefois, si pour une raison quelconque l'intensité du courant dépasse les valeurs nominales, le circuit s'ouvre en raison du fonctionnement des déclencheurs du disjoncteur.

    La caractéristique de réponse d'un disjoncteur est une caractéristique très importante, qui décrit à quel point le temps de réponse d'un automate dépend du rapport entre le courant traversant l'automate et le courant nominal de l'automate.

    Cette caractéristique est compliquée par le fait que son expression nécessite l'utilisation de graphiques. Les automates ayant le même calibre seront déconnectés différemment à différents dépassements de courant en fonction du type de courbe d'automate (parfois appelée caractéristique de courant), ce qui permet d'utiliser des automates ayant des caractéristiques différentes pour différents types de charge.

    Ainsi, d’une part, la fonction de protection du courant est exécutée et, d’autre part, le nombre minimum de fausses alarmes est assuré - c’est l’importance de cette caractéristique.

    Dans les industries de l'énergie, il existe des situations dans lesquelles une augmentation du courant à court terme n'est pas associée à l'apparition d'un mode d'urgence et la protection ne doit pas réagir à de tels changements. La même chose s'applique aux machines.

    Lorsque vous mettez en marche un moteur, par exemple une pompe datcha ou un aspirateur, un courant d'appel suffisamment important se produit dans la ligne, ce qui est plusieurs fois supérieur à la normale.

    Selon la logique du travail, la machine doit bien sûr se déconnecter. Par exemple, le moteur consomme en mode de démarrage 12 A et en mode de travail - 5. La machine coûte 10 A et le réduit à 12. Que faire alors? Si, par exemple, il est réglé sur 16 A, on ne sait pas s'il sera désactivé ou non si le moteur est coincé ou si le câble est fermé.

    Il serait possible de résoudre ce problème s’il était mis sur un courant plus faible, mais il serait alors déclenché par n’importe quel mouvement. C’est dans ce but qu’un tel concept d’automate a été inventé sous le nom de «caractéristique de courant temporel».

    Quels sont les temps, les caractéristiques actuelles des disjoncteurs et la différence entre eux

    Comme on le sait, les principaux organes de déclenchement du disjoncteur sont les déclencheurs thermiques et électromagnétiques.

    Le dégagement thermique est une plaque de bilame, qui se plie lorsqu'elle est chauffée par un courant. Ainsi, le mécanisme est déclenché, avec une surcharge longue déclenchée, avec une temporisation inverse. Le chauffage de la plaque bimétallique et le temps de réponse du déclencheur dépendent directement du niveau de surcharge.

    Le déclencheur électromagnétique est un solénoïde avec un noyau; le champ magnétique du solénoïde est entraîné à un certain courant dans le noyau, ce qui déclenche le mécanisme de déclenchement. Un court-circuit instantané se produit, de sorte que le réseau affecté n'attend pas le réchauffement thermique (plaque bimétallique) dans l'automate.

    La dépendance du temps de réponse du disjoncteur au courant traversant le disjoncteur est déterminée par la caractéristique temporelle du disjoncteur.

    Tout le monde a probablement remarqué l’image des lettres latines B, C, D sur les boîtiers des machines modulaires. Ils caractérisent donc la multiplicité du point de consigne du déclencheur électromagnétique par rapport à la valeur nominale de l'automate, en indiquant sa caractéristique de courant temporel.

    Ces lettres indiquent le courant instantané de la libération électromagnétique de la machine. En termes simples, la caractéristique de déclenchement du disjoncteur indique la sensibilité de celui-ci - le courant le plus faible auquel le disjoncteur s’éteindra instantanément.

    Les machines ont plusieurs caractéristiques, dont les plus courantes sont:

    • - B - de 3 à 5 × In;
    • - C - de 5 à 10 × In;
    • - D - de 10 à 20 × In.

    Que signifient les chiffres ci-dessus?

    Je vais donner un petit exemple. Supposons qu'il existe deux machines automatiques de même puissance (égales en courant nominal), mais que les caractéristiques de réponse (lettres latines de la machine automatique) sont différentes: machines automatiques B16 et C16.

    La plage de fonctionnement du déclencheur électromagnétique pour B16 est de 16 * (3.5) = 48. 80A. Pour C16, la plage de courants de fonctionnement instantané est de 16 * (5. 10) = 80. 160A.

    À un courant de 100 A, l’arrêt automatique B16 est presque instantané, tandis que le C16 ne s’éteint pas immédiatement mais au bout de quelques secondes de la protection thermique (après réchauffement de sa plaque bimétallique).

    Dans les immeubles résidentiels et les appartements, où les charges sont purement actives (sans courants de démarrage importants) et où certains moteurs puissants sont peu allumés, les plus sensibles et les plus utilisés sont les automates avec la caractéristique B. Aujourd'hui, la caractéristique C est très courante et peut également être utilisée pour immeubles résidentiels et de bureaux.

    En ce qui concerne les caractéristiques du D, il convient tout simplement à l’alimentation de tous les moteurs électriques, gros moteurs et autres dispositifs, où les courants de démarrage peuvent être importants lorsqu’ils sont allumés. De plus, grâce à une sensibilité réduite en cas de court-circuit, les automates de caractéristique D peuvent être recommandés comme sélections d'introduction avec un groupe plus élevé AB comme court-circuit afin d'augmenter les chances.

    Convenez logiquement que le temps de réponse dépend de la température de la machine. L'automate s'éteindra plus rapidement si son organe thermique (plaque bimétallique) est chauffé. À l'inverse, lorsque vous vous allumez pour la première fois, le temps d'arrêt à froid de l'automate bimétallique est plus long.

    Par conséquent, sur le graphique, la courbe supérieure caractérise l'état froid de l'automate, la courbe inférieure caractérise l'état chaud de l'automate.

    La ligne en pointillé indique la limite actuelle pour les automates jusqu'à 32 A.

    Ce qui est montré dans les caractéristiques actuelles du graphique

    En prenant l'exemple d'un disjoncteur de 16 ampères, qui a la caractéristique de courant temporel C, nous allons essayer de considérer les caractéristiques de réponse des disjoncteurs.

    Sur le graphique, vous pouvez voir comment le courant traversant le disjoncteur affecte la dépendance de son temps d'arrêt. La multiplicité du courant circulant dans le circuit par rapport au courant nominal de l'automate (I / In) représente l'axe des X et le temps de réponse, en secondes, de l'axe des Y.

    Il a été dit plus haut qu’un déclencheur électromagnétique et thermique faisait partie de la machine. Par conséquent, le programme peut être divisé en deux sections. La partie raide du graphique montre la protection contre les surcharges (fonctionnement du déclencheur thermique) et la partie la plus plate, la protection contre les courts-circuits (fonctionnement du déclencheur électromagnétique).

    Comme on peut le voir sur le graphique, si le C16 est connecté à une charge de 23, il devrait s'éteindre dans 40 secondes. En d’autres termes, si une surcharge de 45% survient, la machine s’éteindra au bout de 40 secondes.

    Lorsque des courants importants peuvent endommager l'isolation du câblage électrique, la machine peut réagir instantanément grâce à la présence d'un déclencheur électromagnétique.

    Lorsqu'un courant de 5 × In (C) traverse la machine C16 (80 A), il devrait fonctionner après 0,02 s (c'est-à-dire si la machine est chaude). À froid, avec une telle charge, il s'éteindra dans les 11 secondes. et 25 sec. (pour les machines jusqu’à 32 A et supérieures à 32 A, respectivement).

    Si un courant 10 × In circule dans la machine, elle s'éteint en 0,03 seconde à froid ou inférieure à 0,01 seconde à chaud.

    Par exemple, en cas de court-circuit dans un circuit protégé par un disjoncteur C16 et si un courant de 320 ampères se produit, le temps de coupure du disjoncteur sera de 0,008 à 0,015 seconde. Ceci coupera le courant du circuit d'urgence et protégera la machine elle-même, qui a court-circuité l'appareil électrique et le câblage électrique, des incendies et de la destruction complète.

    Machines avec lesquelles caractéristiques il est préférable d'utiliser à la maison

    Dans les appartements, dans la mesure du possible, il est nécessaire d’utiliser des machines automatiques de la catégorie B, plus sensibles. Cette machine fonctionnera en surcharge de la même manière qu’une machine de la catégorie C. Mais qu’en est-il du cas d’un court-circuit?

    Si la maison est neuve, qu'elle est en bon état électrique, que la sous-station est proche et que toutes les connexions sont de haute qualité, le courant de court-circuit peut atteindre des valeurs telles qu'il devrait suffire à déclencher même l'automate d'entrée.

    Le courant peut s'avérer faible en cas de court-circuit, si la maison est ancienne, et si des fils avec une résistance de ligne énorme y vont (surtout dans les réseaux ruraux, où la résistance de boucle est importante, phase zéro) - dans ce cas, la machine automatique de la catégorie C peut ne pas fonctionner du tout. Par conséquent, le seul moyen de sortir de cette situation est d'installer des automates avec une caractéristique de type B.

    Par conséquent, la caractéristique temporelle actuelle du type B est nettement préférable, en particulier dans la datcha ou la campagne ou dans l’ancien fonds.

    Dans la vie de tous les jours, il est conseillé d’installer le type C sur l’automate et l’automate de type B des lignes de groupe pour prises de courant et éclairages. Ainsi, la sélectivité sera respectée et l’automate d’entrée ne s’éteindra pas et ne «éteindra» pas tout. un appartement.