Choix du disjoncteur: types et caractéristiques des machines électriques

  • L'éclairage

Beaucoup d'entre nous se sont sûrement demandé pourquoi les disjoncteurs avaient si rapidement remplacé les fusibles périmés du circuit électrique? L'activité de leur introduction est justifiée par un certain nombre d'arguments très convaincants.

La machine éteint presque instantanément la ligne qui lui est confiée, ce qui évite d'endommager le câblage et les équipements alimentés par le secteur. Une fois l’arrêt terminé, la succursale peut être immédiatement redémarrée sans remplacer le dispositif de sécurité. De plus, il est possible d’acheter ce type de protection, correspondant idéalement aux données temps-courant de types spécifiques d’équipements électriques.

Cependant, pour bien choisir le disjoncteur, il est nécessaire de comprendre la classification des appareils. Vous devez savoir à quels paramètres vous devez porter une attention particulière. Vous trouverez cette information précieuse dans l'article proposé par nous.

Classification du disjoncteur

Les disjoncteurs sont généralement choisis en fonction de quatre paramètres clés: capacité de coupure nominale, nombre de pôles, caractéristique temps-courant, courant de fonctionnement nominal.

Paramètre n ° 1. Capacité de rupture nominale

Cette caractéristique indique le courant de court-circuit (SC) admissible auquel l'interrupteur fonctionnera et, après avoir ouvert le circuit, mettra hors tension le câblage et les dispositifs qui y sont connectés. Selon ce paramètre, trois types d'automates sont divisés - 4,5 kA, 6 kA, 10 kA.

  1. Les systèmes automatiques de 4,5 kA (4 500 A) sont couramment utilisés pour exclure les dommages aux lignes électriques des propriétés résidentielles privées. La résistance du câblage de la sous-station au court-circuit est d'environ 0,05 Ohm, ce qui donne une limite de courant d'environ 500 A.
  2. Des dispositifs de 6 kA (6000 A) sont utilisés pour protéger le secteur résidentiel contre les courts-circuits et les lieux publics où la résistance des lignes peut atteindre 0,04 ohm, ce qui augmente les risques de court-circuit à 5,5 kA.
  3. Les interrupteurs pour 10 kA (10 000 A) servent à protéger les installations électriques à usage industriel. Un courant pouvant atteindre 10 000 A peut se produire dans un court-circuit, situé près de la sous-station.

Avant de choisir la modification optimale du disjoncteur, il est important de comprendre si des courants de court-circuit supérieurs à 4,5 kA ou à 6 kA sont possibles.

L'arrêt de la machine se produit en cas de court-circuit du point de consigne. Le plus souvent, les disjoncteurs 6000A sont utilisés pour les besoins domestiques, tandis que les modèles 4500A ne sont pratiquement pas utilisés pour protéger les réseaux électriques modernes et que, dans certains pays, leur exploitation est interdite.

Le fonctionnement du disjoncteur sert à protéger le câblage (et non l'équipement et les utilisateurs) contre les courts-circuits et la fusion de l'isolation lorsque les courants dépassent les valeurs nominales.

Paramètre n ° 2. Nombre de pôles

Cette caractéristique indique le nombre maximal de fils pouvant être connectés à l’AV pour protéger le réseau. Ils sont désactivés en cas d'urgence (dépassement des valeurs de courant admissibles ou dépassement du niveau de la courbe temps-courant).

Cette caractéristique indique le nombre maximal de fils pouvant être connectés à l’AV pour protéger le réseau. Ils sont désactivés en cas d'urgence (dépassement des valeurs de courant admissibles ou dépassement du niveau de la courbe temps-courant).

Caractéristiques des machines unipolaires

Le commutateur de type unipolaire est la modification la plus simple de la machine automatique. Il est conçu pour protéger les circuits individuels, ainsi que le câblage monophasé, biphasé et triphasé. Il est possible de connecter 2 fils à la conception du disjoncteur - le fil d’alimentation et le fil sortant.

Les fonctions de cette classe d'appareils incluent uniquement la protection du fil contre le feu. Le neutre du câblage lui-même est placé sur le bus zéro, contournant ainsi le disjoncteur, et le fil de terre est connecté séparément au bus de terre.

Un automate unipolaire ne remplit pas la fonction d'une entrée, car lorsqu'il est forcé de s'éteindre, la ligne de phase est cassée et le neutre est connecté à une source de tension, ce qui ne fournit pas une garantie de protection à 100%.

Caractéristiques des commutateurs bipolaires

Lorsqu'il est nécessaire de déconnecter complètement le câblage réseau de la tension, utilisez une machine à deux pôles. Il est utilisé comme entrée lorsque, lors d’un court-circuit ou d’un dysfonctionnement du réseau, tout le câblage électrique est mis hors tension simultanément. Cela vous permet d'effectuer des travaux en temps opportun sur la réparation, la modernisation des chaînes est absolument sans danger.

Appliquez des machines bipolaires dans les cas où un interrupteur séparé est nécessaire pour un appareil électrique monophasé, par exemple un chauffe-eau, une chaudière, une machine-outil.

Connectez la machine au périphérique protégé à l’aide de 4 fils, dont 2 fils d’alimentation (l’un connecté directement au réseau et le second alimenté par un cavalier) et 2 fils sortants nécessitant une protection. Ils peuvent être 1-, 2-, 3 fils.

Modification tripolaire des disjoncteurs

Protéger le réseau triphasé à 3 ou 4 fils à l'aide de machines tripolaires. Ils conviennent pour une connexion en fonction du type d’étoile (le fil du milieu n’est pas protégé, et les fils de phase sont connectés aux pôles) ou d’un triangle (avec le fil central manquant).

En cas d'accident sur l'une des lignes, les deux autres s'éteignent indépendamment.

Le disjoncteur tripolaire sert d’entrée et de commun pour tous les types de charges triphasées. La modification est souvent utilisée dans l'industrie pour fournir du courant électrique.

Jusqu'à 6 fils sont connectés au modèle, 3 d'entre eux sont représentés par les fils de phase d'un réseau triphasé. Les 3 autres sont protégés. Ils représentent un câblage triphasé ou triphasé.

L'utilisation de l'automatique à quatre phases

Pour protéger un réseau électrique triphasé ou triphasé, par exemple un moteur puissant connecté sur le principe d'une étoile, un automate quadriphasé est utilisé. Il est utilisé comme commutateur d'entrée sur un réseau triphasé à quatre fils.

Il est possible de connecter huit fils au corps de la machine, dont quatre sont des fils de phase du réseau électrique (l'un d'eux est neutre) et quatre sont représentés par des fils sortants (triphasé et 1 neutre).

Paramètre n ° 3. Caractéristique temps-courant

Les AB peuvent avoir le même indicateur de la puissance nominale de la charge, mais les caractéristiques de la consommation d'énergie électrique par les instruments peuvent être différentes. La consommation électrique peut être inégale, varier en fonction du type et de la charge, ainsi que du moment où vous allumez, éteignez ou continuez le fonctionnement d'un périphérique.

Les fluctuations de puissance peuvent être assez importantes, et la gamme de leurs changements - larges. Cela entraîne l'arrêt de la machine en raison du dépassement du courant nominal, ce qui est considéré comme une fausse déconnexion du réseau.

Afin d’exclure la possibilité d’un fonctionnement impropre du fusible en cas de modifications standard non urgentes (augmentation du courant, changement de puissance), des automates avec certaines caractéristiques temps-courant (VTH) sont utilisés. Cela permet de faire fonctionner des commutateurs avec les mêmes paramètres de courant avec des charges admissibles arbitraires sans fausses pannes.

BTX indique, après quelle heure le commutateur fonctionnera et quels indicateurs du rapport entre le courant et le courant continu de la machine seront.

Caractéristiques des machines avec caractéristique B

Un automate avec la caractéristique spécifiée s'arrête pendant 5 à 20 secondes. L'indicateur de courant est 3-5 courants nominaux de la machine. Ces modifications servent à protéger les circuits alimentant des appareils domestiques standard.

Le plus souvent, le modèle est utilisé pour protéger le câblage d'appartements, de maisons privées.

Caractéristique C - Principes de fonctionnement

La machine automatique portant la désignation de nomenclature C s’éteint pendant 1 à 10 secondes pour 5 à 10 courants nominaux.

Les interrupteurs de ce groupe sont utilisés dans tous les domaines - dans la vie quotidienne, la construction, l’industrie, mais ils sont les plus recherchés dans le domaine de la protection électrique des appartements, des maisons et des locaux résidentiels.

Fonctionnement des interrupteurs avec caractéristique D

Les machines de classe D sont utilisées dans l'industrie et sont représentées par des modifications tripolaires et quadripolaires. Ils sont utilisés pour protéger des moteurs électriques puissants et divers appareils triphasés. Le temps de réponse de l’AV est de 1 à 10 secondes avec un courant multiple de 10 à 14, ce qui permet de l’utiliser efficacement pour protéger divers câblages.

Les puissants moteurs industriels fonctionnent exclusivement avec AB avec la caractéristique D.

Paramètre n ° 4. Courant de fonctionnement nominal

Au total, il existe 12 modifications d’automates qui diffèrent en termes de courant assigné de fonctionnement - 1A, 2A, 3A, 6A, 10A, 16A, 20A, 25A, 32A, 40A. Le paramètre est responsable de la vitesse de fonctionnement de l'automate lorsque le courant dépasse la valeur nominale.

Le choix du commutateur sur la caractéristique spécifiée est effectué en tenant compte de la puissance du câblage électrique, du courant admissible que le câblage peut supporter en mode normal. Si la valeur actuelle est inconnue, elle est déterminée à l'aide de formules, à l'aide des données de la section de fil, de son matériau et de sa méthode d'installation.

Le mode automatique 1A, 2A, 3A sert à protéger les circuits à faible courant. Ils conviennent à la fourniture d'électricité à un petit nombre d'appareils, tels que des lampes ou des lustres, des réfrigérateurs de faible puissance et d'autres appareils dont la puissance totale n'excède pas les capacités de la machine. Le commutateur 3A est utilisé efficacement dans l'industrie si vous réalisez une connexion triphasée d'un triangle.

Les interrupteurs 6A, 10A, 16A peuvent être utilisés pour fournir de l’électricité à des circuits électriques individuels, de petites pièces ou des appartements. Ces modèles sont utilisés dans l’industrie, car ils permettent d’alimenter des moteurs électriques, des solénoïdes, des chauffages, des machines à souder connectées à une ligne séparée.

Des automates 16A à trois, quatre pôles sont utilisés comme entrée pour un schéma d'alimentation triphasé. En production, la préférence est donnée aux instruments à courbe en D.

Les machines 20A, 25A, 32A sont utilisées pour protéger le câblage d'appartements modernes. Elles sont capables de fournir de l'électricité aux machines à laver, aux radiateurs électriques, aux sécheuses électriques et à d'autres appareils de grande puissance. Le modèle 25A est utilisé comme automate de saisie.

Les commutateurs 40A, 50A, 63A appartiennent à la classe des appareils à forte puissance. Ils sont utilisés pour fournir de l'électricité à des équipements de grande puissance dans la vie quotidienne, l'industrie et le génie civil.

Sélection et calcul des disjoncteurs

Connaissant les caractéristiques de AB, vous pouvez déterminer quelle machine convient à un usage particulier. Mais avant de choisir le modèle optimal, il est nécessaire de faire quelques calculs avec lesquels vous pouvez déterminer avec précision les paramètres du périphérique souhaité.

Étape # 1. Déterminer la puissance de la machine

Lors du choix d'une machine, il est important de prendre en compte la puissance totale des périphériques connectés.

Par exemple, vous avez besoin d'une machine pour connecter les appareils de cuisine à l'alimentation. Supposons qu'une cafetière (1000 W), un réfrigérateur (500 W), un four (2000 W), un four à micro-ondes (2000 W), une bouilloire électrique (1000 W) soient raccordés à la prise. La puissance totale sera égale à 1000 + 500 + 2000 + 2000 + 1000 = 6500 (W) ou 6,5 kV.

Si vous regardez le tableau des automates pour la puissance de connexion, considérez que la tension de câblage standard en conditions réelles est de 220 V; ensuite, un automate unipolaire ou bipolaire 32A avec une puissance totale de 7 kW conviendra.

Il convient de tenir compte du fait qu'une consommation électrique importante peut être nécessaire, car pendant le fonctionnement, il peut être nécessaire de connecter d'autres appareils électriques qui n'ont pas été initialement pris en compte. Pour envisager cette situation, un facteur de multiplication est utilisé dans le calcul de la consommation totale.

Par exemple, en ajoutant du matériel électrique supplémentaire, une augmentation de puissance de 1,5 kW était nécessaire. Ensuite, vous devez prendre un facteur de 1,5 et le multiplier par la puissance calculée obtenue.

Dans les calculs, il est parfois conseillé d'utiliser un facteur de réduction. Il est utilisé lorsque l'utilisation simultanée de plusieurs périphériques est impossible. Supposons que le câblage électrique total pour la cuisine était de 3,1 kW. Le facteur de réduction est alors égal à 1, car le nombre minimal d'appareils connectés en même temps est pris en compte.

Si l’un des appareils ne peut pas être connecté aux autres, le facteur de réduction est considéré comme inférieur à un.

Étape n ° 2 Calcul de la puissance nominale de la machine

La puissance nominale est la puissance à laquelle le câblage n'est pas déconnecté. Il est calculé par la formule:

où M est la puissance (Watt), N est la tension du réseau électrique (Volt), CT le courant pouvant traverser la machine (Ampère), est le cosinus de l'angle qui reçoit la valeur de l'angle de déphasage et de la tension. La valeur du cosinus est généralement égale à 1 car il n'y a pratiquement pas de décalage entre les phases de courant et de tension.

De la formule nous exprimons ST:

La puissance que nous avons déjà déterminée et la tension du réseau est généralement de 220 volts.

Si la puissance totale est de 3,1 kW, alors

Le courant résultant sera de 14 A.

Pour le calcul avec une charge triphasée, la même formule est utilisée, mais tenez compte des décalages angulaires, qui peuvent atteindre des valeurs importantes. Habituellement, sur l'équipement connecté, ils sont répertoriés.

Étape # 3. Calcul du courant nominal

Calculer le courant nominal peut être sur la documentation pour le câblage, mais si ce n'est pas le cas, alors déterminé sur la base des caractéristiques du conducteur. Les données suivantes sont nécessaires pour les calculs:

  • section du conducteur;
  • matériau utilisé pour vivre (cuivre ou aluminium);
  • façon de poser.

Dans les conditions de vie, le câblage est généralement situé dans le mur.

En effectuant les mesures nécessaires, nous calculons l’aire de la section transversale:

Dans la formule, D est le diamètre du conducteur (mm),

S est la section du conducteur (mm 2).

Ensuite, utilisez le tableau ci-dessous.

En tenant compte des données obtenues, nous sélectionnons le courant de fonctionnement de la machine, ainsi que sa valeur nominale. Il doit être égal ou inférieur au courant de fonctionnement. Dans certains cas, il est autorisé d'utiliser des machines dont le courant nominal est supérieur au courant réel du câblage.

Étape # 4. Détermination des caractéristiques temps-courant

Afin de déterminer correctement le BTX, il est nécessaire de prendre en compte les courants de démarrage des charges connectées. Les données nécessaires peuvent être trouvées en utilisant le tableau ci-dessous.

Selon le tableau, vous pouvez déterminer le courant (en ampères) lorsque le périphérique est allumé, ainsi que la période pendant laquelle la limite de courant se reproduira.

Par exemple, si vous utilisez un hachoir à viande électrique d’une puissance de 1,5 kW, calculez son courant de fonctionnement à partir des tableaux (il s’agit de 6,81 A) et, en tenant compte de la multiplicité du courant de démarrage (jusqu’à 7 fois), vous obtenez la valeur du courant de 6,81 * 7 = 48 (A). Le courant de cette force circule avec une fréquence de 1 à 3 secondes.

En considérant les graphiques de VTK pour la classe B, vous pouvez voir qu'en cas de surcharge, le disjoncteur fonctionnera dans les premières secondes suivant le démarrage du hachoir à viande. Il est évident que la multiplicité de cet appareil correspond à la classe C, il faut donc utiliser la machine avec la caractéristique C pour assurer le fonctionnement du hachoir à viande électrique.

Pour les besoins domestiques, utilisez habituellement des commutateurs répondant aux caractéristiques de B, C. Dans l’industrie des équipements à courants multiples élevés (moteurs, alimentations, etc.), un courant jusqu’à 10 fois est créé. Il est donc conseillé d’utiliser des modifications en D de l’appareil. Toutefois, la puissance de ces dispositifs, ainsi que la durée du courant de démarrage, doivent être pris en compte.

Les commutateurs automatisés autonomes sont différents des commutateurs ordinaires en ce qu'ils sont installés dans des tableaux de distribution séparés. Les fonctions de l’appareil incluent la protection du circuit contre les surtensions imprévues, les pannes de courant sur tout ou partie du réseau.

Vidéo utile sur le sujet

Vidéo n ° 1: Sélection de AB par la caractérisation du courant et exemple de calcul du courant

Vidéo n ° 2: Calcul du courant nominal AB

Machines montées à l'entrée d'une maison ou d'un appartement. Ils sont situés dans des boîtes en plastique solides. Compte tenu des caractéristiques de base des disjoncteurs et des calculs appropriés, vous pouvez faire le bon choix pour cet appareil.

Quelles sont les caractéristiques de courant temporel des disjoncteurs

Lors du fonctionnement normal du réseau électrique et de tous les appareils, un courant électrique traverse le disjoncteur. Toutefois, si pour une raison quelconque l'intensité du courant dépasse les valeurs nominales, le circuit s'ouvre en raison du fonctionnement des déclencheurs du disjoncteur.

La caractéristique de réponse d'un disjoncteur est une caractéristique très importante, qui décrit à quel point le temps de réponse d'un automate dépend du rapport entre le courant traversant l'automate et le courant nominal de l'automate.

Cette caractéristique est compliquée par le fait que son expression nécessite l'utilisation de graphiques. Les automates ayant le même calibre seront déconnectés différemment à différents dépassements de courant en fonction du type de courbe d'automate (parfois appelée caractéristique de courant), ce qui permet d'utiliser des automates ayant des caractéristiques différentes pour différents types de charge.

Ainsi, d’une part, la fonction de protection du courant est exécutée et, d’autre part, le nombre minimum de fausses alarmes est assuré - c’est l’importance de cette caractéristique.

Dans les industries de l'énergie, il existe des situations dans lesquelles une augmentation du courant à court terme n'est pas associée à l'apparition d'un mode d'urgence et la protection ne doit pas réagir à de tels changements. La même chose s'applique aux machines.

Lorsque vous mettez en marche un moteur, par exemple une pompe datcha ou un aspirateur, un courant d'appel suffisamment important se produit dans la ligne, ce qui est plusieurs fois supérieur à la normale.

Selon la logique du travail, la machine doit bien sûr se déconnecter. Par exemple, le moteur consomme en mode de démarrage 12 A et en mode de travail - 5. La machine coûte 10 A et le réduit à 12. Que faire alors? Si, par exemple, il est réglé sur 16 A, on ne sait pas s'il sera désactivé ou non si le moteur est coincé ou si le câble est fermé.

Il serait possible de résoudre ce problème s’il était mis sur un courant plus faible, mais il serait alors déclenché par n’importe quel mouvement. C’est dans ce but qu’un tel concept d’automate a été inventé sous le nom de «caractéristique de courant temporel».

Quels sont les temps, les caractéristiques actuelles des disjoncteurs et la différence entre eux

Comme on le sait, les principaux organes de déclenchement du disjoncteur sont les déclencheurs thermiques et électromagnétiques.

Le dégagement thermique est une plaque de bilame, qui se plie lorsqu'elle est chauffée par un courant. Ainsi, le mécanisme est déclenché, avec une surcharge longue déclenchée, avec une temporisation inverse. Le chauffage de la plaque bimétallique et le temps de réponse du déclencheur dépendent directement du niveau de surcharge.

Le déclencheur électromagnétique est un solénoïde avec un noyau; le champ magnétique du solénoïde est entraîné à un certain courant dans le noyau, ce qui déclenche le mécanisme de déclenchement. Un court-circuit instantané se produit, de sorte que le réseau affecté n'attend pas le réchauffement thermique (plaque bimétallique) dans l'automate.

La dépendance du temps de réponse du disjoncteur au courant traversant le disjoncteur est déterminée par la caractéristique temporelle du disjoncteur.

Tout le monde a probablement remarqué l’image des lettres latines B, C, D sur les boîtiers des machines modulaires. Ils caractérisent donc la multiplicité du point de consigne du déclencheur électromagnétique par rapport à la valeur nominale de l'automate, en indiquant sa caractéristique de courant temporel.

Ces lettres indiquent le courant instantané de la libération électromagnétique de la machine. En termes simples, la caractéristique de déclenchement du disjoncteur indique la sensibilité de celui-ci - le courant le plus faible auquel le disjoncteur s’éteindra instantanément.

Les machines ont plusieurs caractéristiques, dont les plus courantes sont:

  • - B - de 3 à 5 × In;
  • - C - de 5 à 10 × In;
  • - D - de 10 à 20 × In.

Que signifient les chiffres ci-dessus?

Je vais donner un petit exemple. Supposons qu'il existe deux machines automatiques de même puissance (égales en courant nominal), mais que les caractéristiques de réponse (lettres latines de la machine automatique) sont différentes: machines automatiques B16 et C16.

La plage de fonctionnement du déclencheur électromagnétique pour B16 est de 16 * (3.5) = 48. 80A. Pour C16, la plage de courants de fonctionnement instantané est de 16 * (5. 10) = 80. 160A.

À un courant de 100 A, l’arrêt automatique B16 est presque instantané, tandis que le C16 ne s’éteint pas immédiatement mais au bout de quelques secondes de la protection thermique (après réchauffement de sa plaque bimétallique).

Dans les immeubles résidentiels et les appartements, où les charges sont purement actives (sans courants de démarrage importants) et où certains moteurs puissants sont peu allumés, les plus sensibles et les plus utilisés sont les automates avec la caractéristique B. Aujourd'hui, la caractéristique C est très courante et peut également être utilisée pour immeubles résidentiels et de bureaux.

En ce qui concerne les caractéristiques du D, il convient tout simplement à l’alimentation de tous les moteurs électriques, gros moteurs et autres dispositifs, où les courants de démarrage peuvent être importants lorsqu’ils sont allumés. De plus, grâce à une sensibilité réduite en cas de court-circuit, les automates de caractéristique D peuvent être recommandés comme sélections d'introduction avec un groupe plus élevé AB comme court-circuit afin d'augmenter les chances.

Convenez logiquement que le temps de réponse dépend de la température de la machine. L'automate s'éteindra plus rapidement si son organe thermique (plaque bimétallique) est chauffé. À l'inverse, lorsque vous vous allumez pour la première fois, le temps d'arrêt à froid de l'automate bimétallique est plus long.

Par conséquent, sur le graphique, la courbe supérieure caractérise l'état froid de l'automate, la courbe inférieure caractérise l'état chaud de l'automate.

La ligne en pointillé indique la limite actuelle pour les automates jusqu'à 32 A.

Ce qui est montré dans les caractéristiques actuelles du graphique

En prenant l'exemple d'un disjoncteur de 16 ampères, qui a la caractéristique de courant temporel C, nous allons essayer de considérer les caractéristiques de réponse des disjoncteurs.

Sur le graphique, vous pouvez voir comment le courant traversant le disjoncteur affecte la dépendance de son temps d'arrêt. La multiplicité du courant circulant dans le circuit par rapport au courant nominal de l'automate (I / In) représente l'axe des X et le temps de réponse, en secondes, de l'axe des Y.

Il a été dit plus haut qu’un déclencheur électromagnétique et thermique faisait partie de la machine. Par conséquent, le programme peut être divisé en deux sections. La partie raide du graphique montre la protection contre les surcharges (fonctionnement du déclencheur thermique) et la partie la plus plate, la protection contre les courts-circuits (fonctionnement du déclencheur électromagnétique).

Comme on peut le voir sur le graphique, si le C16 est connecté à une charge de 23, il devrait s'éteindre dans 40 secondes. En d’autres termes, si une surcharge de 45% survient, la machine s’éteindra au bout de 40 secondes.

Lorsque des courants importants peuvent endommager l'isolation du câblage électrique, la machine peut réagir instantanément grâce à la présence d'un déclencheur électromagnétique.

Lorsqu'un courant de 5 × In (C) traverse la machine C16 (80 A), il devrait fonctionner après 0,02 s (c'est-à-dire si la machine est chaude). À froid, avec une telle charge, il s'éteindra dans les 11 secondes. et 25 sec. (pour les machines jusqu’à 32 A et supérieures à 32 A, respectivement).

Si un courant 10 × In circule dans la machine, elle s'éteint en 0,03 seconde à froid ou inférieure à 0,01 seconde à chaud.

Par exemple, en cas de court-circuit dans un circuit protégé par un disjoncteur C16 et si un courant de 320 ampères se produit, le temps de coupure du disjoncteur sera de 0,008 à 0,015 seconde. Ceci coupera le courant du circuit d'urgence et protégera la machine elle-même, qui a court-circuité l'appareil électrique et le câblage électrique, des incendies et de la destruction complète.

Machines avec lesquelles caractéristiques il est préférable d'utiliser à la maison

Dans les appartements, dans la mesure du possible, il est nécessaire d’utiliser des machines automatiques de la catégorie B, plus sensibles. Cette machine fonctionnera en surcharge de la même manière qu’une machine de la catégorie C. Mais qu’en est-il du cas d’un court-circuit?

Si la maison est neuve, qu'elle est en bon état électrique, que la sous-station est proche et que toutes les connexions sont de haute qualité, le courant de court-circuit peut atteindre des valeurs telles qu'il devrait suffire à déclencher même l'automate d'entrée.

Le courant peut s'avérer faible en cas de court-circuit, si la maison est ancienne, et si des fils avec une résistance de ligne énorme y vont (surtout dans les réseaux ruraux, où la résistance de boucle est importante, phase zéro) - dans ce cas, la machine automatique de la catégorie C peut ne pas fonctionner du tout. Par conséquent, le seul moyen de sortir de cette situation est d'installer des automates avec une caractéristique de type B.

Par conséquent, la caractéristique temporelle actuelle du type B est nettement préférable, en particulier dans la datcha ou la campagne ou dans l’ancien fonds.

Dans la vie de tous les jours, il est conseillé d’installer le type C sur l’automate et l’automate de type B des lignes de groupe pour prises de courant et éclairages. Ainsi, la sélectivité sera respectée et l’automate d’entrée ne s’éteindra pas et ne «éteindra» pas tout. un appartement.

Comment sont les courants aux disjoncteurs

Le courant traversant le disjoncteur est déterminé par la loi d'Ohm connue par l'amplitude de la tension appliquée, rapportée à la résistance du circuit connecté. Cette position théorique de l'électrotechnique est la base du fonctionnement de tout automate.

En pratique, la tension du secteur, par exemple 220 volts, est maintenue par les dispositifs automatiques de l’organisation d’alimentation dans les limites spécifiées par les normes de l’État, varie légèrement dans cette plage. Aller au-delà des limites de GOST est considéré comme un dysfonctionnement, un accident.

Le disjoncteur coupe le fil d'alimentation de phase des lampes, des prises et des autres consommateurs. Lorsque le rasoir électrique est alimenté en premier à partir de la prise, puis de l’aspirateur, un courant circule dans la machine le long d’un circuit fermé entre la phase et zéro.

Mais, dans le premier cas, il sera relativement petit, et dans le second - significatif: ces appareils ont des résistances différentes. Ils créent une charge différente. Sa valeur est constamment surveillée par la protection de la machine, ce qui permet de la désactiver en cas de déviation de la norme.

Comment le courant circule-t-il dans le disjoncteur?

Structurellement, l'automate est créé pour que le courant agisse sur des éléments successifs. Ceux-ci comprennent:

bornes pour connecter les fils avec des vis de serrage;

contacts de puissance avec la partie mobile et fixe;

plaque bimétallique du dégagement thermique;

courant de court-circuit à coupure électromagnétique;

Le trajet du courant à travers le disjoncteur est indiqué sur l'image par les flèches classiques en rouge.

Les contacts mobiles sont appuyés sur les contacts fixes, créant un circuit électrique continu uniquement après que l'opérateur a tourné manuellement le levier de commande. Une condition préalable à l'inclusion est l'absence de situations d'urgence dans le circuit commuté. S'ils apparaissent, la protection pour l'arrêt automatique commence immédiatement à fonctionner. Il n'y a pas d'autre moyen d'allumer la machine.

Mais pour rompre ces contacts, désénergiser l’offre du potentiel de la phase aux consommateurs, de deux manières:

renvoyer manuellement le levier de commande;

automatiquement à partir de l'opération de protection.

Comment les éléments structurels du disjoncteur sont-ils créés et exploités?

Contacts de puissance

Tout comme la conception du disjoncteur, ils sont conçus pour transmettre une puissance strictement limitée. Il ne peut pas être dépassé, car dans le cas contraire, la machine tombera en panne - elle brûlera.

La caractéristique technique limitant la puissance maximale passant par les contacts de puissance est un indicateur appelé «Capacité de coupure ultime». Il est désigné par l'index "Icu".

La valeur du pouvoir de coupure maximal d’un disjoncteur est défini lorsqu’il est conçu à partir d’une série standard de courants, généralement mesurée en kiloampères. Par exemple, Icu peut être de 4 ou 6 voire de 100 kA ou plus.

Cette valeur est indiquée directement sur la face avant du boîtier de l’automate, ainsi que d’autres caractéristiques des paramètres actuels.

Ainsi, à travers les contacts de puissance de l'automate montré dans l'image, vous pouvez faire passer en toute sécurité un courant électrique de zéro à 4000 ampères. L’appareil audiovisuel lui-même le maintient normalement et le déconnecte en cas d’urgence dans le câblage électrique connecté aux consommateurs.

A cette fin, une distinction a été introduite entre les courants traversant les contacts de puissance pour:

1. nominale et de travail;

2. urgence, y compris surcharge et court-circuit.

Quel est le courant nominal du disjoncteur

Toute machine est créée pour fonctionner dans certaines conditions techniques. Il doit garantir de manière fiable que le courant de fonctionnement de la charge traverse à la fois le câblage électrique et les consommateurs connectés.

Lorsqu'ils choisissent une machine pour un réseau domestique, les utilisateurs prennent souvent en compte les propriétés conductrices du câblage ou uniquement la puissance des appareils électriques. Ils commettent une erreur: il est nécessaire d'analyser de manière exhaustive ces deux problèmes. Pour un commutateur est un appareil automatique qui est déjà réglé pour le fonctionnement lorsque certaines valeurs actuelles sont atteintes.

Lorsque ces conditions ne sont pas encore réunies et que le courant de fonctionnement traversant la machine est inférieur. que les limites d’arrêt, les contacts d’alimentation sont bien fermés. La limite supérieure de cette plage de fonctionnement s'appelle le courant nominal, noté In.

Le chiffre «16» montré dans l'image indique que les courants passant par les contacts de puissance, y compris jusqu'à 16 ampères inclus, seront transmis de manière fiable par le disjoncteur aux consommateurs connectés via des fils électriques.

Ceci est une fonction de la machine elle-même. Et le propriétaire de l'installation électrique et de l'électricien de maintenance a une tâche complètement différente: choisir le bon disjoncteur pour la charge et le câblage du complexe. Après tout, si ces 16 ampères sont dépassés, il y aura des déclenchements de protections configurées pour fonctionner à partir de différents courants «liés» par les algorithmes électriques à la valeur nominale. Plus d'informations ici - Choix de disjoncteurs pour un appartement, une maison, un garage

Comment fonctionnent les protections?

Tous les courants supérieurs à la valeur nominale déclencheront la protection. Ils sont appelés courants d’actionnement, notés Iср.

Pour un arrêt automatique à l'intérieur du boîtier de la machine, deux types d'appareils sont installés, qui fonctionnent selon différents principes d'arrêt:

1. chauffer et plier le bilame avec le verrou mécanique sorti de l’engagement;

2. frapper le loquet par l'impact mécanique du noyau de l'électroaimant.

Libération thermique

Il fonctionne en raison de la flexion d'une plaque composite bimétallique lorsqu'il est chauffé par un courant la traversant et il est refroidi en raison de l'évacuation de la chaleur dans l'environnement.

L'énergie thermique appliquée par ce courant à travers le bilame est appliquée à ce déclencheur. Sa valeur, comme nous le savons par la loi Joule-Lenz, dépend de:

1. circuit de résistance électrique;

2. courant électrique;

3. et l'heure de son impact.

Parmi ces trois paramètres, la résistance électrique dans le processus à l'état stable reste presque inchangée. Il n'est pris en compte que dans les calculs théoriques. Lors du changement de charge, le courant change radicalement. Par conséquent, deux autres paramètres sont plus importants:

1. la magnitude du courant électrique;

2. heure de son écoulement.

Ils prennent en compte les caractéristiques spéciales, appelées pour ces composants - temps-courant.

La force du courant traversant la machine et la durée de son action déterminent non seulement la zone de fonctionnement du déclencheur thermique, mais également la coupure électromagnétique.

Le calcul est basé sur la valeur du courant nominal sélectionné pour la conception du disjoncteur. Le fonctionnement de la protection est lié à sa multiplicité - le rapport entre le courant qui passe et le courant nominal.

Etant donné que la protection de courant du disjoncteur est utilisée pour dépasser le courant nominal, le rapport de courant I / In est toujours> 1.

Coupure électromagnétique

Le travail de protection repose sur la mesure constante des courants traversant les spires des enroulements de l’électroaimant. Lorsque les charges ne dépassent pas la valeur nominale, les courants circulant à chaque tour créent un champ magnétique total qui ne peut pas vaincre la force de maintien de la tige mécanique à l'intérieur du corps du solénoïde.

La tête du poussoir mobile est rétractée à l'intérieur et le contact électrique mobile du disjoncteur est fermement appuyé contre la partie fixe.

Lorsque la puissance du courant qui passe dépasse le réglage du courant nominal, le champ magnétique total formé à l'intérieur de la bobine surmontera de manière spectaculaire la force qui maintient la tige. Il tire et un coup sec frappe le loquet, le tire hors de l'engagement.

À la suite de la gâche, le contact de puissance en mouvement du disjoncteur est brusquement mis au rebut par de l’énergie mécanique provenant du contact fixe, le circuit électrique est rompu et la tension d’alimentation est retirée du circuit connecté.

Comment les disjoncteurs de protection sont configurés

Pour que l'automate maintienne clairement le courant nominal sans créer de faux positifs, ses protections sont reconstruites à l'aide des valeurs calculées.

Libération thermique

Lors du choix d'un réglage de courant standard, la nature de la charge connectée est prise en compte et calculée à l'aide de la formule Iust = kp kn ∙ In, où kp = 1,1 et kn prend en compte les conditions de fonctionnement. Il se situe dans:

1,1 ÷ 1,3 pour les circuits présentant des surcharges à court terme dues au démarrage de moteurs électriques ou d'appareils similaires;

1.1 - pour les circuits résistifs sans surcharge ou pour le fonctionnement de circuits à courant continu.

À titre d’exemple, considérons la caractéristique de protection de la libération thermique de l’ancien disjoncteur A3120.

Dans la section actuelle de 1,3 à 10 fois, la caractéristique est représentée par la courbe «a», l'actionnement est effectué avec une temporisation, créant une réserve pour le travail des appareils électriques connectés. Avec l'augmentation de la charge, le temps nécessaire pour les désactiver est réduit de plusieurs minutes à une seconde.

Avec une charge décuplée, le déclencheur thermique A3120 supprime les contacts de puissance avec un temps d’environ 0,01 seconde avec une petite variation de paramètres, indiqués dans le graphique en rouge pâle. Une multiplication par dix des courants de fonctionnement ne peut pas accélérer le fonctionnement de la protection en raison des propriétés mécaniques de la conception du disjoncteur.

Coupure électromagnétique

Les paramètres de la caractéristique temps-courant de l'organe électromagnétique de la coupure sont également réglés sur le courant nominal. Dans les machines domestiques, le courant de déclenchement instantané est divisé en trois classes:

1. En se situant à moins de 3 5 In;

Pour les appareils techniques de production, des disjoncteurs ayant les classes suivantes sont créés:

A, déclenché à des courants inférieurs à 3In;

E et F - multiplicité supérieure à 20In dans diverses limites.

La classe de fonctionnement décrite des automates domestiques est légalisée par les exigences de la norme GOST R 50345—2010. Les fabricants étrangers appliquent également une division similaire des seuils instantanés, mais les normes et les délais de déclenchement en vigueur peuvent différer, spécifiés par les réglementations de leurs pays ou de la CEI 60947-2.

Limite de courant de la classe de comptabilité

La vitesse du disjoncteur instantané de protection de courant est liée à la fréquence de l'harmonique sinusoïdale du réseau industriel et est indiquée par l'un des chiffres: 1, 2 ou 3. Cette figure montre la partie demi-onde de l'harmonique standard pendant laquelle la panne doit survenir.

Une machine automatique avec une limite actuelle de 3 est la plus rapide - elle fonctionnera pendant 1/3 de la demi-période. La caractéristique 2 indique sa moitié et 1 - toute la longueur de la demi-onde.

Conditions pour limiter les courants traversant le disjoncteur

Un point important dans le fonctionnement de la protection des automates fonctionnant sous des courants de charge est de prendre en compte le circuit qui leur est connecté, qui possède déjà une sorte de résistance. Sa valeur limitera le fonctionnement de la coupure en mode d'urgence et ne permettra pas, à un moment donné, de retirer rapidement la tension d'alimentation de l'équipement endommagé.

Un exemple d'un tel site est la résistance de l'enroulement de la source du transformateur d'alimentation avec tous les conducteurs connectés des câbles et des fils du réseau électrique, assemblés sur les borniers et les bornes des boîtes de distribution et des blindages jusqu'aux contacts de la prise de l'appartement. Ses experts appellent une boucle de phase zéro.

Pour prendre en compte sa valeur avec la configuration et le fonctionnement corrects du disjoncteur, utilisez des dispositifs spéciaux - des mesureurs de résistance de cette boucle.

Leur mesure permet de prendre en compte la modification introduite par la résistance supplémentaire des fils, ce qui signifie - prendre en compte avec précision les courants passant en mode secours par les contacts de puissance et la protection du disjoncteur.

Comment un disjoncteur est testé pour les courants qui le traversent.

Après la production à la production et l’installation dans le circuit électrique, les produits de tous les fabricants peuvent être transportés sur de longues distances ou stockés pendant de longues périodes dans des entrepôts. Pendant ce temps, il est possible de réduire sa qualité en raison d’une violation des caractéristiques techniques.

Par conséquent, les disjoncteurs installés sur le circuit avant de le mettre en service doivent être vérifiés pour en vérifier l'état de fonctionnement, appelé progruzkoy.

À cet effet, un circuit spécial de chargement de la machine est assemblé dans le laboratoire électronique ou l'une des nombreuses structures de supports fixes ou portables est utilisée.

Le disjoncteur est testé par rapport au courant nominal indiqué sur le boîtier. Il doit résister à sa valeur pendant longtemps.

Ensuite, la machine est soumise à des surcharges et à des courants de court-circuit, auxquels elle doit résister pendant le fonctionnement. Dans le même temps, ils sont clairement mesurés et enregistrés:

1. courants de fonctionnement du déclencheur thermique et protection contre les surintensités;

2. heures de déconnexion automatique à partir du moment de l'imitation d'une situation d'urgence.

Certains modèles de machines vous permettent d’ajuster les paramètres de sortie pendant le chargement. Par exemple, certains types de déclencheurs thermiques ont une fixation par vis, ce qui permet de corriger le réglage du capteur d'un bilame dans certaines limites.

Toutes les caractéristiques mesurées sont enregistrées avec des appareils de mesure de haute précision et consignées dans le protocole de vérification, par rapport aux exigences de GOST. Après analyse, un certificat est délivré avec une conclusion sur l’aptitude physique.

Le chargement de la machine sous charge vous permet d'identifier les défauts, d'éviter les risques d'incendies et de blessures électriques.

Ainsi, les courants traversant les disjoncteurs sont pris en compte dans la conception, la production, les tests et le fonctionnement. Pour ce faire, nous introduisons les termes pris en compte par les exigences de GOST:

Catégories de disjoncteurs: A, B, C et D

Les disjoncteurs sont des dispositifs chargés de protéger un circuit électrique des dommages causés par une exposition à un courant important. Un flux d'électrons trop important peut endommager les appareils ménagers et provoquer une surchauffe du câble, entraînant une refusion et une inflammation. Si la ligne n’est pas mise hors tension à temps, un incendie risque de se produire.Par conséquent, conformément aux exigences des Règles pour les installations électriques (Règles pour l’installation électrique), le fonctionnement du réseau dans lequel les disjoncteurs électriques ne sont pas installés est interdit. AB a plusieurs paramètres, dont l’un est la caractéristique de courant temporel du commutateur de protection automatique. Dans cet article, nous expliquerons la différence entre les disjoncteurs des catégories A, B, C, D et la protection des réseaux pour lesquels ils sont utilisés.

Caractéristiques des machines de protection de réseau

Quelle que soit la classe à laquelle appartient un disjoncteur, sa tâche principale est toujours la même: détecter rapidement un courant excessif et mettre le réseau hors tension avant que le câble et les dispositifs connectés à la ligne ne soient endommagés.

Les courants qui peuvent être dangereux pour le réseau sont divisés en deux types:

  • Courants de surcharge. Leur apparition est le plus souvent due à l'inclusion dans le réseau de périphériques dont la puissance totale est supérieure à celle que la ligne est capable de supporter. Une autre cause de surcharge est la défaillance d’un ou de plusieurs périphériques.
  • Surintensité provoquée par un court-circuit. Un court-circuit se produit lorsque les conducteurs de phase et de neutre sont interconnectés. À l'état normal, ils sont connectés à la charge séparément.

L'appareil et le principe de fonctionnement du disjoncteur - dans la vidéo:

Surintensité

Leur taille dépasse le plus souvent légèrement la valeur nominale de l'automate, de sorte que le passage d'un tel courant électrique le long du circuit, s'il ne dure pas trop longtemps, n'endommage pas la ligne. À cet égard, une mise hors tension instantanée dans ce cas n'est pas nécessaire, de plus, le flux d'électrons revient souvent souvent à la normale. Chaque AB est conçu pour un certain excès du courant électrique auquel il est déclenché.

Le temps de réponse d'un disjoncteur de protection dépend de l'ampleur de la surcharge: avec un léger dépassement de la norme, cela peut prendre une heure ou plus, et pour une heure significative, quelques secondes.

Pour déconnecter la puissance sous l'influence d'une charge puissante répond au dégagement thermique, qui est basé sur une plaque bimétallique.

Cet élément est chauffé sous l'influence d'un courant puissant, il devient plastique, se plie et provoque un déclenchement automatique.

Courants de court-circuit

Le flux d'électrons provoqué par un court-circuit dépasse largement la valeur du dispositif de protection, ce qui le déclenche immédiatement et coupe l'alimentation. Pour la détection de court-circuit et la réponse immédiate de l'appareil est responsable de libération électromagnétique, qui est un solénoïde avec un noyau. Ce dernier, sous l’influence d’une surintensité, affecte instantanément l’interrupteur et le déclenche. Ce processus prend une fraction de seconde.

Cependant, il y a une nuance. Parfois, le courant de surcharge peut aussi être très important, mais pas par court-circuit. Comment l'appareil devrait-il déterminer la différence entre eux?

Dans la vidéo sur la sélectivité des commutateurs automatiques:

Ici, nous passons en douceur à la question principale à laquelle notre matériel est consacré. Comme nous l’avons dit, il existe plusieurs classes d’AB, dont les caractéristiques diffèrent d’un moment à l’autre. Les plus courants d'entre eux, utilisés dans les réseaux électriques domestiques, sont les dispositifs des classes B, C et D. Les disjoncteurs appartenant à la catégorie A sont beaucoup moins courants. Ils sont les plus sensibles et sont utilisés pour protéger les instruments de précision.

Entre eux, ces dispositifs diffèrent par les déclenchements instantanés actuels. Sa valeur est déterminée par la multiplicité du courant traversant le circuit jusqu'à la valeur nominale de l'automate.

Caractéristiques de déclenchement des disjoncteurs

La classe AB, déterminée par ce paramètre, est indiquée par la lettre latine et est apposée sur le corps de la machine devant le numéro correspondant au courant nominal.

Conformément à la classification établie par l'EMP, les automates de protection sont divisés en plusieurs catégories.

Machines de type MA

Une caractéristique distinctive de tels dispositifs est l'absence de dégagement thermique en eux. Les appareils de cette classe sont installés dans les circuits de connexion de moteurs électriques et d’autres unités puissantes.

La protection contre les surcharges dans de telles lignes fournit un relais de surintensité, le disjoncteur protège uniquement le réseau des dommages dus aux courts-circuits de surintensité.

Appareils de classe A

Les machines de type A, comme on l'a dit, ont la plus grande sensibilité. Le dégagement thermique dans les appareils avec la caractéristique temps-courant A se déclenche le plus souvent lorsque l'ampérage AB est dépassé de 30%.

La bobine de déclenchement électromagnétique met le réseau hors tension pendant environ 0,05 seconde si le courant électrique dans le circuit dépasse la valeur nominale de 100%. Si, pour quelque raison que ce soit, après avoir doublé la puissance du flux d'électrons d'un facteur deux, le solénoïde électromagnétique ne fonctionnait pas, le déclencheur bimétallique l'éteint pendant 20-30 secondes.

Les machines avec la caractéristique de chronométrage A sont incluses dans les lignes, durant lesquelles même les surcharges à court terme sont inacceptables. Ceux-ci incluent des circuits contenant des éléments semi-conducteurs.

Dispositifs de sécurité de classe B

Les dispositifs de la catégorie B ont une sensibilité moins grande que ceux associés au type A. Leur déclenchement électromagnétique se déclenche lorsque le courant nominal est supérieur de 200% et que le temps de réponse est de 0,015 seconde. Le fonctionnement du bilame dans le disjoncteur avec la caractéristique B avec un excès similaire de la valeur nominale de AB prend 4-5 secondes.

Les équipements de ce type sont destinés à être installés sur des lignes comprenant des prises de courant, des dispositifs d’éclairage et d’autres circuits où l’augmentation du courant électrique au démarrage est absente ou a une valeur minimale.

Machines de catégorie C

Les périphériques de type C sont les plus courants dans les réseaux domestiques. Leur capacité de surcharge est même supérieure à celle décrite précédemment. Pour que le solénoïde de déclenchement électromagnétique soit installé dans un tel instrument, il est nécessaire que le flux d'électrons le traversant dépasse la valeur nominale 5 fois. Le dégagement thermique déclenche avec un excès de cinq fois supérieur à la valeur de l'appareil de protection en 1,5 seconde.

L’installation de disjoncteurs avec la caractéristique temporelle C, comme nous l’avons dit, se fait généralement dans les réseaux domestiques. Ils font un excellent travail en jouant le rôle de périphériques d’entrée pour protéger l’ensemble du réseau, tandis que les appareils de catégorie B sont bien adaptés aux succursales individuelles auxquelles des groupes de prises et des appareils d’éclairage sont connectés.

Cela permettra d’observer la sélectivité des automates protecteurs (sélectivité) et, avec un court-circuit dans l’une des branches, il n’y aura pas de mise hors tension de toute la maison.

Disjoncteurs Catégorie D

Ces appareils ont la plus grande capacité de surcharge. Pour le fonctionnement d'une bobine électromagnétique installée dans un appareil de ce type, il est nécessaire que le courant électrique du disjoncteur de protection soit dépassé au moins 10 fois.

Dans ce cas, le dégagement thermique déclenche en 0,4 seconde.

Les dispositifs présentant la caractéristique D sont le plus souvent utilisés dans les réseaux généraux de bâtiments et de structures, où ils jouent un rôle de filet de sécurité. Ils se déclenchent s’il n’ya pas de coupure de courant ponctuelle provoquée par des disjoncteurs dans des pièces séparées. Ils sont également installés dans des circuits avec une grande quantité de courants de démarrage, auxquels sont connectés par exemple des moteurs électriques.

Dispositifs de sécurité des catégories K et Z

Les automates de ces types sont beaucoup moins courants que ceux décrits ci-dessus. Les appareils de type K présentent une grande variation des valeurs de courant requises pour le déclenchement électromagnétique. Ainsi, pour un circuit à courant alternatif, cet indicateur doit dépasser la valeur nominale de 12 fois et pour une valeur constante de -18. Le fonctionnement d'un solénoïde électromagnétique se produit en 0,02 seconde au maximum. Le dégagement thermique de ces équipements peut se produire si le courant nominal n’est dépassé que de 5%.

Ces caractéristiques sont dues à l'utilisation de dispositifs de type K dans des circuits avec des charges extrêmement inductives.

Les dispositifs de type Z ont également des courants de déclenchement différents du solénoïde du déclenchement électromagnétique, mais la propagation n’est pas aussi grande que dans la catégorie AV de catégorie K. Pour les déconnecter, le courant nominal doit être de trois fois, et dans les réseaux à courant continu, la valeur du courant électrique doit être égale à 4,5 fois la valeur nominale.

Les dispositifs à caractéristique Z ne sont utilisés que sur les lignes auxquelles des appareils électroniques sont connectés.

Clairement sur les catégories de machines sur la vidéo:

Conclusion

Dans cet article, nous avons examiné les caractéristiques de courant temporel des automates de protection, la classification de ces dispositifs conformément à l'EMP, ainsi que les circuits installés pour les dispositifs de différentes catégories. Les informations résultantes vous aideront à déterminer quel équipement de protection doit être utilisé sur le réseau, en fonction des appareils qui y sont connectés.

Caractéristiques actuelles des disjoncteurs

Bonjour, chers lecteurs du site http://elektrik-sam.info.

Dans cet article, nous examinerons les caractéristiques principales des disjoncteurs que vous devez connaître pour pouvoir naviguer correctement lors de leur choix: il s'agit des caractéristiques de courant nominal et de courant temporel des disjoncteurs.

Permettez-moi de vous rappeler que cette publication est incluse dans une série d'articles et de vidéos sur les dispositifs de protection électrique du cours Disjoncteurs, DDR, Difavtomaty - un guide détaillé.

Les caractéristiques principales du disjoncteur sont indiquées sur son boîtier, où la marque ou la marque du fabricant et le numéro de catalogue ou de série sont également appliqués.

La caractéristique la plus importante d'un disjoncteur est le courant nominal. C'est le courant maximal (en ampères) pouvant traverser indéfiniment la machine sans déconnecter le circuit protégé. Lorsque le flux de courant dépasse cette valeur, l'automate s'active et ouvre le circuit protégé.

La plage de valeurs du courant nominal des disjoncteurs est normalisée et est:

6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100A.

La valeur du courant nominal de l'automate est indiquée sur son boîtier en ampères et correspond à une température ambiante de + 30˚С. Lorsque la température augmente, la valeur du courant nominal diminue.

De plus, les automates des tableaux électriques sont généralement installés en plusieurs pièces les unes à la suite des autres, ce qui entraîne une augmentation de la température (les automates se «réchauffent») et une diminution de la valeur du courant commuté par ces derniers.

Certains fabricants de disjoncteurs spécifient des facteurs de correction dans les catalogues pour prendre en compte ces paramètres.

Pour plus de détails sur les effets de la température ambiante et sur le nombre d'appareils de protection installés, voir l'article Pourquoi un disjoncteur se déclenche par temps chaud.

Au moment de la connexion de certains consommateurs au réseau électrique, par exemple des réfrigérateurs, des aspirateurs, des compresseurs, etc., des courants de démarrage apparaissent brièvement dans le circuit, ce qui peut dépasser plusieurs fois le courant nominal de la machine. Pour le câble, un tel courant de surcharge à court terme n’est pas terrible.

Par conséquent, pour éviter que la machine ne s'éteigne à chaque fois avec une légère augmentation à court terme du courant dans le circuit, des machines présentant différents types de caractéristiques temps-courant sont utilisées.

Ainsi, la caractéristique principale suivante:

La caractéristique de réponse temps-courant d'un disjoncteur est la dépendance du temps de déclenchement du circuit protégé en fonction de l'intensité du courant qui le traverse. Le courant est indiqué en tant que rapport au courant nominal I / In, c.-à-d. combien de fois le courant traversant le disjoncteur dépasse le courant nominal de ce disjoncteur.

L'importance de cette caractéristique réside dans le fait que les automates ayant la même valeur nominale seront éteints différemment (en fonction du type de caractéristique temps-courant). Cela permet de réduire le nombre de fausses alarmes en utilisant des disjoncteurs ayant des caractéristiques de courant différentes pour différents types de charge,

Considérons les types de caractéristiques temps-courant:

- Le type A (2 à 3 valeurs de courant nominal) est utilisé pour protéger les circuits avec une grande longueur de câblage et pour protéger les dispositifs à semi-conducteurs.

- Le type B (3 à 5 valeurs du courant nominal) est utilisé pour protéger les circuits avec une faible valeur de la multiplicité du courant de démarrage avec une charge principalement active (lampes à incandescence, appareils de chauffage, appareils de chauffage, systèmes d'éclairage à usage général). Montré pour une utilisation dans des appartements et des bâtiments résidentiels où les charges sont principalement actives.

- Le type C (5-10 valeurs de courant nominal) est utilisé pour protéger les circuits d'installations avec des courants de démarrage modérés - climatiseurs, réfrigérateurs, prises de courant domestiques et de bureau, lampes à décharge de gaz avec courant de démarrage accru.

- Le type D (10 à 20 valeurs du courant nominal) est utilisé pour protéger les circuits alimentant des installations électriques avec des courants de démarrage élevés (compresseurs, mécanismes de levage, pompes, machines). Ils sont installés principalement dans des locaux industriels.

- Le type K (8-12 valeurs de courant nominal) est utilisé pour protéger les circuits à charge inductive.

- Le type Z (2,5-3,5 valeurs de courant nominal) est utilisé pour protéger les circuits avec des appareils électroniques sensibles aux surintensités.

Dans la vie courante, on utilise très rarement des disjoncteurs ayant les caractéristiques B, C et très rarement D. Le type de caractéristique est indiqué sur le corps de l'automate par une lettre latine avant la valeur nominale du courant.

Le marquage "C16" sur le disjoncteur indiquera qu’il présente le type de déclenchement instantané C (c’est-à-dire qu’il est déclenché lorsque le courant est égal à 5 ​​à 10 fois le courant nominal) et que le courant nominal est à 16 A.

La caractéristique temps-courant d'un disjoncteur est généralement donnée sous forme de graphique. L'axe horizontal indique la multiplicité du courant nominal et l'axe vertical indique le temps de réponse de l'automate.

Le large éventail de valeurs sur le graphique est dû à la variation des paramètres des disjoncteurs, qui dépendent de la température, externe et interne, car le disjoncteur est chauffé par un courant électrique le traversant, notamment dans des conditions d'urgence, par un courant de surcharge ou un courant de court-circuit (SC).

Le graphique montre que lorsque la valeur I / I≤≤ 1, le temps de déclenchement du disjoncteur tend vers l'infini. En d’autres termes, tant que le courant traversant le disjoncteur est inférieur ou égal au courant nominal, le disjoncteur ne se déclenchera pas (s’éteindra).

Le graphique montre également que plus la valeur de I / In est élevée (c’est-à-dire que plus le courant traversant le disjoncteur dépasse la valeur nominale), plus le disjoncteur s’éteint rapidement.

Lorsqu’il passe par un disjoncteur automatique dont la valeur est égale à la limite inférieure de la plage de fonctionnement du déclencheur électromagnétique (3In pour "B", 5In pour "C" et 10In pour "D"), il doit s’éteindre pendant plus de 0,1 seconde.

Lorsque le courant est égal à la limite supérieure de la plage de fonctionnement du déclencheur électromagnétique (5In pour «B», 10In pour «C» et 20In pour «D»), le disjoncteur s'éteindra en moins de 0,1 s. Si le courant du circuit principal se situe dans la plage des courants de déclenchement instantanés, le disjoncteur se déclenche avec un léger retard ou sans retard (moins de 0,1 s).

Dans les articles suivants, nous continuerons d’examiner les caractéristiques des disjoncteurs, la méthode et la stratégie de calcul et de sélection. Si vous souhaitez ne pas manquer de nouveaux documents intéressants sur ce sujet - abonnez-vous au site de nouvelles, le formulaire d’abonnement au bas de l’article.

En conclusion de l'article, une vidéo détaillée de la classification et des caractéristiques actuelles des disjoncteurs: